This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
This book examines life not from the reductionist point of view, but rather asks the questions: what are the universal properties of living systems, and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation is relatively non-technical to appeal to a broad spectrum of students and researchers.
This review volume is devoted to a discussion of analogies and differences of complex production systems OCo natural, as in biological cells, or man-made, as in economic systems or industrial production. Taking this unified look at production is based on two observations: Cells and many biological networks are complex production units that have evolved to solve production problems in a reliable and optimal way in a highly stochastic environment. On the other hand, industrial production is becoming increasingly complex and often hard to predict. As a result, modeling and control of such production networks involve many different spatial and temporal scales and decision policies for many different structures. The common themes of industrial and biological production include evolution and optimization, synchronization and self-organization, robust operation despite high stochasticity, and hierarchical dynamics. The mathematical techniques used come from dynamical systems theory, transport equations, control theory, pattern formation, graph theory, discrete event simulations, stochastic processes, and others. The application areas range from semiconductor production to supply chains, protein networks, slime molds, social networks, and whole economies.
This book provides a good coverage of the recent developments and future directions in the study of dissipative systems. The primary thrust here is in exposing the reader to the frontiers of chaos, pointing out clues for further work in nonlinear science. With the aid of various types of mappings, the collapse of tori is investigated. The book contains much valuable introductory material and copious reference lists. Some notes on the historical development of the subject are interspersed in this volume.
With emphasis on recent advances, this book describes the microbial method of amino acid production: the breeding of amino acid-producing microorganisms, the direct fermentation method, the precursor addition method, the enzymatic method, and biochemical engineering aspects. Annotation copyrighted by Book News, Inc., Portland, OR
This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
This book examines life not from the reductionist point of view, but rather asks the questions: what are the universal properties of living systems, and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation is relatively non-technical to appeal to a broad spectrum of students and researchers.
This book provides a good coverage of the recent developments and future directions in the study of dissipative systems. The primary thrust here is in exposing the reader to the frontiers of chaos, pointing out clues for further work in nonlinear science. With the aid of various types of mappings, the collapse of tori is investigated. The book contains much valuable introductory material and copious reference lists. Some notes on the historical development of the subject are interspersed in this volume.
This review volume is devoted to a discussion of analogies and differences of complex production systems OCo natural, as in biological cells, or man-made, as in economic systems or industrial production. Taking this unified look at production is based on two observations: Cells and many biological networks are complex production units that have evolved to solve production problems in a reliable and optimal way in a highly stochastic environment. On the other hand, industrial production is becoming increasingly complex and often hard to predict. As a result, modeling and control of such production networks involve many different spatial and temporal scales and decision policies for many different structures. The common themes of industrial and biological production include evolution and optimization, synchronization and self-organization, robust operation despite high stochasticity, and hierarchical dynamics. The mathematical techniques used come from dynamical systems theory, transport equations, control theory, pattern formation, graph theory, discrete event simulations, stochastic processes, and others. The application areas range from semiconductor production to supply chains, protein networks, slime molds, social networks, and whole economies.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.