This graduate-level text focuses on the stability of adaptive systems, and offers a thorough understanding of the global stability properties essential to designing adaptive systems. Its self-contained, unified presentation of well-known results establishes the close connections between seemingly independent developments in the field. Prerequisites include a knowledge of linear algebra and differential equations, as well as a familiarity with basic concepts in linear systems theory. The first chapter sets the tone for the entire book, introducing basic concepts and tracing the evolution of the field from the 1960s through the 1980s. The first seven chapters are accessible to beginners, and the final four chapters are geared toward more advanced, research-oriented students. Problems ranging in complexity from relatively easy to quite difficult appear throughout the text. Topics include results in stability theory that emphasize incidents directly relevant to the study of adaptive systems; the stability properties of adaptive observers and controllers; the important concept of persistent excitation; the use of error models in systems analysis; areas of intense research activity; and five detailed case studies of systems in which adaptive control has proved successful
This volume offers a glimpse of the status of research in adaptive and learning systems in 1985. In recent years these areas have spawned a multiplicity of ideas so rapidly that the average research worker or practicing engineer is overwhelmed by the flood of information. The Yale Workshop on Applications of Adaptive Systems Theory was organized in 1979 to provide a brief respite from this deluge, wherein critical issues may be examined in a calm and collegial environment. The fourth of the series having been held in May 1985, it has now become well established as a biennial forum for the lively exchange of ideas in the ever changing domain of adaptive systems. The scope of this book is broad and ranges from theoretical investigations to practical applications. It includes twenty eight papers by leaders in the field, selected from the Pro ceedings of the Fourth Yale Workshop and divided into five sections. I have provided a brief introduction to each section so that it can be read as a self-contained unit. The first section, devoted to adaptive control theory, suggests the intensity of activity in the field and reveals signs of convergence towards some common themes by workers with rather different moti vation. Preliminary results concerning the reduced order model problem are dramatically changing the way we view the field and bringing it closer to other areas such as robust linear control where major advances have been recently reported.
This self-contained introductorytext on the behavior of learningautomata focuses on howa sequential decision-makerwith a finite number of choiceswould respond in a random environment. A must for all studentsof stochastic algorithms, this treatment is the workof two well-known scientists, one of whom provides a newIntroduction.Reprint of the Prentice-Hall, Inc, Englewood Cliffs, NewJersey, 1989 edition.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.