This book presents a unified treatment of the mechanics of mixtures of several constituents within the context of continuum mechanics. After an introduction to the basic theory in the first few chapters, the book deals with a detailed exposition of the mechanics of a mixture of a fluid and an elastic solid, which is either isotropic or anisotropic and is capable of undergoing large deformations. Issues regarding the specification of boundary conditions for mixtures are discussed in detail and several boundary value and initial-boundary value problems are solved. The status of some special theories like those of Darcy and Biot are discussed. Such a study has relevance to several technologically significant problems in geomechanics, biomechanics, diffusion of contaminants and the swelling and absorption of fluids in polymers and polymer composites, to mention a few.
These lecture notes deal with the behavior of elastic bodies subject to small displacement gradients, namely their linearized elastic response. The framework for describing the nonlinear response of elastic bodies is first put into place and then the linearization is carried out to delineate the status of the linearized theory of elasticity. Easy reading for upper-division and first-year engineering students is provided by a balanced combination of mathematical rigor and physical understanding. This lecture note grew out of a course that the author regularly teaches to undergraduate mechanical engineering students.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.