Computational social choice is an expanding field that merges classical topics like economics and voting theory with more modern topics like artificial intelligence, multiagent systems, and computational complexity. This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent setting. It presents the main approaches to modeling and reasoning with preferences, with particular attention to two popular and powerful formalisms, soft constraints and CP-nets. The authors consider preference elicitation and various forms of uncertainty in soft constraints. They review the most relevant results in voting, with special attention to computational social choice. Finally, the book considers preferences in matching problems. The book is intended for students and researchers who may be interested in an introduction to preference reasoning and multi-agent preference aggregation, and who want to know the basic notions and results in computational social choice. Table of Contents: Introduction / Preference Modeling and Reasoning / Uncertainty in Preference Reasoning / Aggregating Preferences / Stable Marriage Problems
Machine learning and artificial intelligence (AI) are powerful tools that create predictive models, extract information, and help make complex decisions. They do this by examining an enormous quantity of labeled training data to find patterns too complex for human observation. However, in many real-world applications, well-labeled data can be difficult, expensive, or even impossible to obtain. In some cases, such as when identifying rare objects like new archeological sites or secret enemy military facilities in satellite images, acquiring labels could require months of trained human observers at incredible expense. Other times, as when attempting to predict disease infection during a pandemic such as COVID-19, reliable true labels may be nearly impossible to obtain early on due to lack of testing equipment or other factors. In that scenario, identifying even a small amount of truly negative data may be impossible due to the high false negative rate of available tests. In such problems, it is possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. We are left with a small set of positive labeled data and a large set of unknown and unlabeled data. Readers will explore this Positive and Unlabeled learning (PU learning) problem in depth. The book rigorously defines the PU learning problem, discusses several common assumptions that are frequently made about the problem and their implications, and considers how to evaluate solutions for this problem before describing several of the most popular algorithms to solve this problem. It explores several uses for PU learning including applications in biological/medical, business, security, and signal processing. This book also provides high-level summaries of several related learning problems such as one-class classification, anomaly detection, and noisy learning and their relation to PU learning.
Computational social choice is an expanding field that merges classical topics like economics and voting theory with more modern topics like artificial intelligence, multiagent systems, and computational complexity. This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent setting. It presents the main approaches to modeling and reasoning with preferences, with particular attention to two popular and powerful formalisms, soft constraints and CP-nets. The authors consider preference elicitation and various forms of uncertainty in soft constraints. They review the most relevant results in voting, with special attention to computational social choice. Finally, the book considers preferences in matching problems. The book is intended for students and researchers who may be interested in an introduction to preference reasoning and multi-agent preference aggregation, and who want to know the basic notions and results in computational social choice. Table of Contents: Introduction / Preference Modeling and Reasoning / Uncertainty in Preference Reasoning / Aggregating Preferences / Stable Marriage Problems
Computational social choice is an expanding field that merges classical topics like economics and voting theory with more modern topics like artificial intelligence, multiagent systems, and computational complexity. This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent setting. It presents the main approaches to modeling and reasoning with preferences, with particular attention to two popular and powerful formalisms, soft constraints and CP-nets. The authors consider preference elicitation and various forms of uncertainty in soft constraints. They review the most relevant results in voting, with special attention to computational social choice. Finally, the book considers preferences in matching problems. The book is intended for students and researchers who may be interested in an introduction to preference reasoning and multi-agent preference aggregation, and who want to know the basic notions and results in computational social choice. Table of Contents: Introduction / Preference Modeling and Reasoning / Uncertainty in Preference Reasoning / Aggregating Preferences / Stable Marriage Problems
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.