An exciton is an electronic excitation wave consisting of an electron-hole pair which propagates in a nonmetallic solid. Since the pioneering research of Fren kel, Wannier and the Pohl group in the 1930s, a large number of experimental and theoretical studies have been made. Due to these investigations the exciton is now a well-established concept and the electronic structure has been clarified in great detail. The next subjects for investigation are, naturally, dynamical processes of excitons such as excitation, relaxation, annihilation and molecule formation and, in fact, many interesting phenomena have been disclosed by recent works. These excitonic processes have been recognized to be quite important in solid-state physics because they involve a number of basic interactions between excitons and other elementary excitations. It is the aim of this quasi monograph to describe these excitonic processes from both theoretical and experimental points of view. we take a few To discuss and illustrate the excitonic processes in solids, important and well-investigated insulating crystals as playgrounds for excitons on which they play in a manner characteristic of each material. The selection of the materials is made in such a way that they possess some unique properties of excitonic processes and are adequate to cover important interactions in which excitons are involved. In each material, excitonic processes are described in detail from the experimental side in order to show the whole story of excitons in a particular material.
DIVAn examination of the increased presence of Japanese media and popluar culture in the rest of Asia and the way it has transformed Japanese self-understanding./div
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient
This book provides introductory, comprehensive, and concise descriptions of amorphous chalcogenide semiconductors and related materials. It includes comparative portraits of the chalcogenide and related materials including amorphous hydrogenated Si, oxide and halide glasses, and organic polymers. It also describes effects of non-equilibrium disorder, in comparison with those in crystalline semiconductors.
This book is the standard text book for elastoplasticity/viscoplasticity which is explained comprehensively covering the rate-independent to -dependent finite deformations of metals, soils, polymers, crystal plasticity, etc. and the friction phenomenon. Concise explanations on vector-tensor analysis and continuum mechanics are provided first, covering the underlying physical concepts, e.g. various time-derivatives, pull-back and push-forward operations, work-conjugacy and multiplicative decomposition of deformation gradient tensor. Then, the rigorous elastoplastic/viscoplastic model, called the subloading surface model, is explained comprehensively, which is based on the subloading surface concept to describe the continuous development of the plastic/viscoplastic strain rate as the stress approaches to the yield surface, while it can never be described by the other plasticity models, e.g. the Chaboche-Ohno and the Dafalias-Yoshida models assuming the purely-elastic domain. The main features of the subloading surface model are as follows: 1) The subloading surface concept underling the cyclic plasticity is introduced, which insists that the plastic deformation develops as the stress approaches the yield surface. Thus, the smooth elastic-plastic transition leading to the continuous variation of the tangent stiffness modulus is described always. 2) The subloading-overstress model is formulated by which the elastoplastic deformation during the quasi-static loading and the viscoplastic deformation during the dynamic and impact loading can be described by the unified equation. Then, only this model can be used to describe the deformation in the general rate of deformation, disusing the elastoplastic constitutive equation. 3) The hyperelastic-based (visco)plasticity based on the multiplicative decomposition of deformation gradient tensor and the subloading surface model is formulated for the exact descriptions of the finite elastic and (visco)plastic deformations. 4) The subloading-friction model is formulated for the exact description of the dry and the fluid (lubricated) frictions at the general rate of sliding from the static to the impact sliding. Thus, all the elastic and inelastic deformation/sliding phenomena of solids can be described accurately in the unified equation by the subloading-overstress model. The subloading surface model will be engraved as the governing law of irreversible deformation of solids in the history of solid mechanics.
In this second edition of a best-selling handbook all the chapters have been completely revised and updated, while four completely new chapters have been added. In order to meet the needs of the practitioner, emphasis is placed on describing precisely the technology and know-how involved. Adopting a didactic and comprehensible approach, the book guides the reader through theory and applications, thus ensuring its warm welcome among the scientific community. An excellent, essential and exhaustive overview.
Understanding the structural unit of crystalline solids is vital in determining their optical and electronic properties. However, the disordered nature of amorphous semiconductors, where no long-range order is retained, makes it difficult to determine their structure using traditional methods. This book shows how computer modelling can be used to overcome the difficulties that arise in the atomic scale identification of amorphous semiconductors. The book explains how to generate a random structure using computer modelling, providing readers with the techniques to construct realistic material structures. It shows how the optical and electronic properties are related to random structures. Readers will be able to understand the characteristic features of disordered semiconductors. The structural and electronic modifications by photon irradiation are also discussed in detail. This book is ideal for both physicists and engineers working in solid state physics, semiconductor engineering and electrical engineering.
Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective man
The introduction of GaAs/ AIGaAs double heterostructure lasers has opened the door to a new age in the application of compound semiconductor materials to microwave and optical technologies. A variety and combination of semiconductor materials have been investigated and applied to present commercial uses with these devices operating at wide frequencies and wavelengths. Semiconductor modulators are typical examples of this technical evolutions and hsve been developed for commercial use. Although these have a long history to date, we are not aware of any book that details this evolution. Consequently, we have written a book to provide a comprehensive account of semiconductor modulators with emphasis on historical details and experimantal reports. The objective is to provide an up-to-date understanding of semiconductor modulators. Particular attention has been paid to multiple quantum well (MQW) modulators operating at long wavelengths, taking into account the low losses and dispersion in silica fibers occuring at around 1.3 and 1.55 mm. At the present time, MQW structures have been investigated but these have not been sufficiently developed to provide characteristic features which would be instructive enough for readers. One problem is the almost daily publication of papers on semiconductor modulators. Not only do these papers provide additional data, but they often modify the interpretations of particular concepts. Almost all chapters refer to the large number of published papers that can be consulted for future study.
Addressing key issues in the instrumentation of powder handling processes, this up-to-date volumeserves as an excellent source of new ideas for designing on-line instruments, as well as a helpfulguide for understanding and applying measurement principles.Describing physical and chemical principles in clear, simple language, Powder and BulkSolids Handling Processes provides substantial background material that lists related industrialfields and the physical representation of powder properties . . . focuses on instrumentation,reviewing state variables in powder processes . . . discusses the sampling of particles from apowder bed or suspension flow as a basic method for evaluating powder handling processes ... andpresents incisive information on various methods and instruments used for on-line measurement ofpowder flow rate, particle concentration in suspension, level of powder in storage vessels, andmore.Complete with references, equations, illustrations, and tables, this volume is essential reading forchemical, mechanical, systems, ceramic, and civil engineers, instrumentation engineers in powderand bulk solid processes, and upper-level undergraduate and graduate students in chemical andmechanical engineering.
This work examines the way in which prominence—a perceptual feature that is highlighted by speakers as being important through prosodic, syntactic, and semantic cues—is marked and perceived in Japanese. Drawing on extensive quantitative data, the authors argue that Japanese, unlike non-agglutinative languages, marks prominence on content words as well as function morphemes, that local F0 boost and boundary pitch movement (BPM) are the cues to mark prominence, that the domain of the focal prominence differs on which cue it is loaded with, and that BPM is possibly aligned to function morphemes and invokes a pragmatic implicature.
Based on the authors ́ extensive experimental experience, NMR Spectroscopy of Polymers explains the practical use of NMR spectroscopy in polymer chemistry.
This volume contains a selection of papers presented at the Seventh Logic Programming Conference that took place in Tokyo, April 11-14, 1988. It is the successor to the previous conference proceedings published as Lecture Notes in Computer Science Volumes 221, 264 and 315. The book covers various aspects of logic programming such as foundations, programming languages/systems, concurrent programming, knowledge bases, applications of computer-aided reasoning and natural language processing. The papers on foundations present theoretical results on "narrowing", a proof strategy for proving properties of Prolog programs based on inductionless induction and several issues in nonmonotonic reasoning. Of special interest to mathematicians is the paper on computer-aided reasoning, which describes a system for assisting human reasoning. Natural language application papers treat the lexical analysis of Japanese sentences, a system that generates a summary of a given sentence and a new knowledge representation formalism suited for representing dynamic behavior by extending the frame system.
Amorphous semiconductors are subtances in the amorphous solid state that have the properties of a semiconductor and which are either covalent or tetrahedrally bonded amorphous semiconductors or chelcogenide glasses. Developed from both a theoretical and experimental viewpoint Deals with, amongst others, preparation techniques, structural, optical and electronic properties, and light induced phenomena Explores different types of amorphous semiconductors including amorphous silicon, amorphous semiconducting oxides and chalcogenide glasses Applications include solar cells, thin film transistors, sensors, optical memory devices and flat screen devices including televisions
This book extensively analyzes the literary works of fiction that draw on the Great East Japan Earthquake and Tsunami that occurred on March 11, 2011. This disaster inspired literally hundreds of fictional works in Japan from the time of the events through 2017. This response represents a unique and perhaps unprecedented cultural phenomenon in the world. Since a variety of writers in different genres, and even amateurs, have written and published books inspired by their experiences of the disaster, it is extremely difficult to cover the entire body of Japanese “post-3.11 literature”. Because of the breadth of this literary response, there is a scarcity of research on the subject available. This book offers the first comprehensive review of Japan’s recent post-disaster literary production to the English audience.
In recent years, the performance of digital computers has been improved by the rapid development of electronics at remarkable speed. In addition, substantial research has been carried out in developing numerical analysis techniques. Nowadays, a variety of problems in the engineering and scientific fields can be solved by using not only super computers but also personal computers. After the first book titled "Boundary Element" was published by Brebbia in 1978, the boundary element method (BEM) has been recognized as a powerful numerical technique which has some advantages over the finite difference method (FDM) and finite element method (FEM). A great amount of research has been carried out on the applications of BEM to various problems. The numerical analysis of fluid mechanics and heat transfer problems plays a key role in analysing some phenomena and it has become recognized as a new research field called "Computational Fluid Dynamics". In partic ular, the analysis of viscous flow including thermal convection phenomena is one of the most important problems in engineering fields. The FDM and FEM have been generally .applied to solve these problems because of non singularities of governing equations.
This volume of the Keio University International Symposia for Life Sciences and Medicine contains the proceedings of the 13th symposium held under the sponsorship of the Keio University Medical Science Fund. The fund was est- lished by the generous donation of the late Dr. Mitsunada Sakaguchi. The Keio University International Symposia for Life Sciences and Medicine constitute one of the core activities sponsored by the fund,of which the objective is to contribute to the international community by developing human resources, promoting scienti?c knowledge, and encouraging mutual exchange. Each year, the Committee of the International Symposia for Life Sciences and Medicine selects the most signi?cant symposium topics from applications received from the Keio medical community. The publication of the proce- ings is intended to publicize and distribute the information arising from the lively discussions of the most exciting and current issues presented during the symposium. On behalf of the Committee, I am most grateful to the late Dr. Sakaguchi, who made the series of symposia possible. We are also grateful to the prominent speakers for their contribution to this volume. In addition, we would like to acknowledge the ef?cient organizational work performed by the members of the program committee and the staff of the fund. Naoki Aikawa, M. D. , D. M. Sc. , F. A. C. S.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.