Ruthenberg highlights the unique aspects of chemistry, specifically its metachemical fundamentals, which have been largely overlooked in current philosophies of science. Conventional metaphysics, derived from or focused on theoretical physics, is inadequate when applied to chemistry. The author examines and integrates historical and philosophical perspectives on important aspects of chemistry, including affinity, compositionism, emergence, synthesis/analysis, atomism/non-atomism, chemical species, chemical bond, chemical concepts, plurality, temporality/potentiality, reactivity, and underdetermination. To accomplish this, he draws on the works of notable chemists such as František Wald, Wilhelm Ostwald, Friedrich Paneth, and Hans Primas, who have contributed to the philosophical understanding of chemistry. The central conclusion of this study aligns with Immanuel Kant's viewpoint: Chemistry is a systematic art.
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.
Deriving from the French word rocaille, in reference to the curved forms of shellfish, and the Italian barocco, the French created the term ‘Rococo’. Appearing at the beginning of the 18th century, it rapidly spread to the whole of Europe. Extravagant and light, Rococo responded perfectly to the spontaneity of the aristocracy of the time. In many aspects, this art was linked to its predecessor, Baroque, and it is thus also referred to as late Baroque style. While artists such as Tiepolo, Boucher and Reynolds carried the style to its apogee, the movement was often condemned for its superficiality. In the second half of the 18th century, Rococo began its decline. At the end of the century, facing the advent of Neoclassicism, it was plunged into obscurity. It had to wait nearly a century before art historians could restore it to the radiance of its golden age, which is rediscovered in this work by Klaus H. Carl and Victoria Charles.
This Brief is an essay at the interface of philosophy and complexity research, trying to inspire the reader with new ideas and new conceptual developments of cellular automata. Going beyond the numerical experiments of Steven Wolfram, it is argued that cellular automata must be considered complex dynamical systems in their own right, requiring appropriate analytical models in order to find precise answers and predictions in the universe of cellular automata. Indeed, eventually we have to ask whether cellular automata can be considered models of the real world and, conversely, whether there are limits to our modern approach of attributing the world, and the universe for that matter, essentially a digital reality.
The twentieth century is as remarkable for its world wars as it is for its efforts to outlaw war in international and constitutional law and politics. Japan in the World examines some of these efforts through the life and work of Shidehara Kijuro, who was active as diplomat and statesman between 1896 until his death in 1951. Shidehara is seen as a guiding thread running through the first five decades of the twentieth century. Through the 1920s until the beginning of the 1930s, his foreign policy shaped Japan's place within the community of nations. The positive role Japan played in international relations and the high esteem in which it was held at that time goes largely to his credit. As Prime Minister and 'man of the hour' after the Second World War, he had a hand in shaping the new beginning for post-war Japan, instituting policies that would start his country on a path to peace and prosperity. Accessing previously unpublished archival materials, Schlichtmann examines the work of this pacifist statesman, situating Shidehara within the context of twentieth century statecraft and international politics. While it was an age of devastating total wars that took a vast toll of civilian lives, the politics and diplomatic history between 1899 and 1949 also saw the light of new developments in international and constitutional law to curtail state sovereignty and reach a peaceful order of international affairs. Japan in the World is an essential resource for understanding that nation's contributions to these world-changing developments.
This book treats extensive form game theory in full generality. It provides a framework that does not rely on any finiteness assumptions at all, yet covers the finite case. The presentation starts by identifying the appropriate concept of a game tree. This concept represents a synthesis of earlier approaches, including the graph-theoretical and the decision-theoretical ones. It then provides a general model of sequential, interpersonal decision making, called extensive decision problems. Extensive forms are a special case thereof, which is such that all strategy profiles induce outcomes and do so uniquely. Requiring the existence of immediate predecessors yields discrete extensive forms, which are still general enough to cover almost all applications. The treatment culminates in a characterization of the topologies on the plays of the game tree that admit equilibrium analysis.
Professor Hildebrand gives a masterly and succinct account of Nazi Germany between 1933 and 1945 and then analyses the major problems of interpretation and the extent to which common ground has been achieved by scholars in the field. This title available in eBook format. Click here for more information. Visit our eBookstore at: www.ebookstore.tandf.co.uk.
It was not the European and American churches which evangelised Africa, but the mission societies. The missions from the Great Awakening such as the London Missionary Society and Church Missionary Society, or the Holy Ghost Fathers and the White Fathers, which started the process of Sub-Saharan Africa becoming a Christian continent are well known and documented. Less known, and less documented are the interdenominational faith missions which began in 1873 with the aim of visiting the still unreached areas of Africa: North Africa, the Sudan Belt and the Congo Basin. Missions such as the Africa Inland Mission or Sudan Interior Mission gave birth to some of the big churches like ECWA in Nigeria and Africa Inland Church in Kenya. It is the aim of this book to describe faith missions and their theology and to present an overview of the early development of faith missions insofar as they touched Africa.
The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new,
This book features a comprehensive discussion of the mathematical foundations of ultrasonic nondestructive testing of materials. The authors include a brief description of the theory of acoustic and electromagnetic fields to underline the similarities and differences with respect to elastodynamics. They also cover vector, elastic plane, and Rayleigh surface waves as well as ultrasonic beams, inverse scattering, and ultrasonic nondestructive imaging. A coordinate-free notation system is used that is easier to understand and navigate than standard index notation.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Cear , Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more general nonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.
This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
The Peptides, Volume I: Methods of Peptide Synthesis focuses on detailed description of protecting groups, individual amino acids, and coupling reactions. The publication first offers information on amino-protecting and carboxyl-protecting groups, including carboxyl protection by salt formation, esterification, and amide formation and acyl-type, alkyl-type, and urethane protecting groups. The text then examines the formation of the peptide bond and amino acids. Discussions focus on amino acids with the alcoholic hydroxyl group, sulfur amino acids, basic and acidic amino acids, synthesis of peptides by activation of the amino group, and peptide synthesis by activation of the carboxyl group. The manuscript elaborates on the synthesis of cyclic peptides, depsipeptides, peptoids, and the plastein reaction. Topics include synthesis of plastein-active peptides, glycopeptides, phosphopeptides, and S-peptides. The publication is a dependable source of data for readers interested in the methods of peptide synthesis.
This book is about all kinds of numbers, from rationals to octonians, reals to infinitesimals. It is a story about a major thread of mathematics over thousands of years, and it answers everything from why Hamilton was obsessed with quaternions to what the prospect was for quaternionic analysis in the 19th century. It glimpses the mystery surrounding imaginary numbers in the 17th century and views some major developments of the 20th century.
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Approximation and Online Algorithms, WAOA 2003, held in Budapest, Hungary in September 2003. The 19 revised full papers presented together with 5 invited abstracts of the related ARACNE mini-symposium were carefully selected from 41 submissions during two rounds of reviewing and improvement. Among the topics addressed are competitive analysis, inapproximability results, randomization techniques, approximation classes, scheduling, coloring and partitioning, cuts and connectivity, packing and covering, geometric problems, network design, and applications to game theory and financial problems.
Both the International Criminal Tribunal for the former Yugoslavia (ICTY) and the International Criminal Tribunal for Rwanda (ICTR) are now about to close. Bachmann and Fatic look back at the achievements and shortcomings of both tribunals from an interdisciplinary perspective informed by sociology, political science, history, and philosophy of law and based upon on two key notions: the concepts of legitimacy and efficiency. The first asks to what extent the input (creation) of, the ICTY and the ICTR can be regarded as legitimate in light of the legal and public debate in the early 1990s. The second confronts the output (the procedures and decisions) of the ICTY and the ICTR with the tasks both tribunals were assigned by the UN Security Council, the General Assembly, and by key organs (the president and the chief prosecutors). The authors investigate to what extent the ICTY and the ICTR have delivered the expected results, whether they have been able to contribute to 'the maintenance of peace', 'stabilization' of the conflict regions, or even managed to provide 'reconciliation' to Rwanda. Furthermore, the book is concerned with how many criminals, over whom the ICTY and the ICTR wield jurisdiction, have actually been prosecuted and at what cost. Offering the first balanced and in depth analysis of the International Criminal Tribunals, the volume provides an important insight into what lessons have been learned, and how a deeper understanding of the successes and failures can benefit the international legal community in the future.
Based on exhaustive reference to primary source material, this volume explores the relationships between religious mythologies and religious philosophical system within the theistic traditions in India. Not content merely to explore these relationships, the author further examines the relevance of mythology and philosophy in a discussion of salvation—salvation understood in its sociological, eschatological, and philosophical senses. The treatment of myth and philosophy is comprehensive in scope, pulling together a great variety of sources and commentary, and illuminating them for the Western reader. This study will be of interest both to students of Indian religions and to students of comparative religion interested in creating a context for the discussion of Eastern and Western religions.
Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As for students and instructors, this book is a well-rounded and comprehensive text on the topic of homogenization for graduate level courses or special mathematics classes. Features: Covers applications in both geophysics and biology. Includes recent results not found in classical books on the topic Focuses on evolutionary kinds of problems; there is little overlap with books dealing with variational methods and T-convergence Includes new results where the G-limits have different structures from the initial operators
NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations
Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
This monumental, comprehensive, controversial study is the first volume of a definitive history of the churches in Germany between the wars. It is especially significant in that it is based on a great deal of original research into both religious and political sources, and is the first book to work on the presupposition that an accurate picture of the churches in the Third Reich demands that both Protestant and Roman Catholic churches are studied side by side, since it was the rivalry between the churches that in some ways contributed to their downfall. Contrary to what has often been asserted, Professor Scholder argues that Hitler did have a plan for the churches over a long period. Crucial to that plan on the Catholic side was his desire for a concordat parallel to that achieved by Mussolini, keeping the clergy out of politics, which the Vatican was over-hasty to meet; it was the attempt to treat the Protestant churches in a similar way to the Catholic church, which led to the difficulties that ended in the church struggle. There is also a realistic analysis of the Jewish question, documenting the churches’ failure in this area with severity and scholarly rigor. The first part covers developments up to Hitler’s seizure of power; the second is devoted to the year 1933, during which all the major issues were in fact decided.
Nuclear physics between 1921 and 1947 shaped more than any other science thepolitical landscape of our century and the public opinion on physical research. Using quantitative scientometric methods, a new branch in the history of science, the author focuses on the developments of nuclear physics in these formative years paying special attention to theimpact of German emigrants on the evolution of the field as a cognitive and social unity. The book is based on a thorough analysis of various citation analyses thus producing results that should be more replicable and more objective. The scientometric techniques should complement the more qualitative approach usually applied in historical writing. This makes the text an interesting study also for the historian in general.
Chemistry of Plant Protection continues the handbook "Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", edited by R. Wegler. Volumes 4 and 5 of the series provide the first complete and in depth overview of synthetic pyrethroid insecticides . Volume 5 presents a detailed survey of the numerous synthetic methods (270 reaction schemes) and of stereochemical aspects of trade products, and a compilation of almost every patent on pyrethroids (2700 references evaluated).
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several megavolts/cm. This development opens the new research field of nonlinear THz spectroscopy in which strong light-matter interactions are exploited to induce quantum excitations and/or charge transport and follow their nonequilibrium dynamics in time-resolved experiments. This book introduces methods of THz generation and nonlinear THz spectroscopy in a tutorial way, discusses the relevant theoretical concepts, and presents prototypical, experimental, and theoretical results in condensed matter physics. The potential of nonlinear THz spectroscopy is illustrated by recent research, including an overview of the relevant literature.
In the 21st century, digitalization is a global challenge of mankind. Even for the public, it is obvious that our world is increasingly dominated by powerful algorithms and big data. But, how computable is our world? Some people believe that successful problem solving in science, technology, and economies only depends on fast algorithms and data mining. Chances and risks are often not understood, because the foundations of algorithms and information systems are not studied rigorously. Actually, they are deeply rooted in logics, mathematics, computer science and philosophy.Therefore, this book studies the foundations of mathematics, computer science, and philosophy, in order to guarantee security and reliability of the knowledge by constructive proofs, proof mining and program extraction. We start with the basics of computability theory, proof theory, and information theory. In a second step, we introduce new concepts of information and computing systems, in order to overcome the gap between the digital world of logical programming and the analog world of real computing in mathematics and science. The book also considers consequences for digital and analog physics, computational neuroscience, financial mathematics, and the Internet of Things (IoT).
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the
The second edition of Non-Perturbative Methods in Two-Dimensional Quantum Field Theory is an extensively revised version, involving major changes and additions. Although much of the material is special to two dimensions, the techniques used should prove helpful also in the development of techniques applicable in higher dimensions. In particular, the last three chapters of the book will be of direct interest to researchers wanting to work in the field of conformal field theory and strings.This book is intended for students working for their PhD degree and post-doctoral researchers wishing to acquaint themselves with the non-perturbative aspects of quantum field theory.
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.