Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.