Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the general theory to partial algebras. The last chapter contains exercises and open problems with suggestions for future work in this area of research. Graduate students and mathematical researchers will find Hyperidentities and Clones a thought-provoking and illuminating text that offers a unique opportunity to study the topic in one source.
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them. Universal Algebra and Applications in Theoretical Computer Science introduces the basic concepts of universal algebra and surveys some of the newer developments in the field. The first half of the book provides a solid grounding in the core material. A leisurely pace, careful exposition, numerous examples, and exercises combine to form an introduction to the subject ideal for beginning graduate students or researchers from other areas. The second half of the book focuses on applications in theoretical computer science and advanced topics, including Mal'cev conditions, tame congruence theory, clones, and commutators. The impact of the advances in universal algebra on computer science is just beginning to be realized, and the field will undoubtedly continue to grow and mature. Universal Algebra and Applications in Theoretical Computer Science forms an outstanding text and offers a unique opportunity to build the foundation needed for further developments in its theory and in its computer science applications.
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
This book adds in chapter 1 and 2 the MIN-key techniques Laser and sealing, completing the 3 MIN-key techniques of the first volume. In chapter 3 the evolution of anatomy to a key-concept of MIN is described, presenting theory and reality of anatomical perspectives that can be used by the MIN-surgeon directly in the OR. Anatomy must be elaborated according to Gestalt-Theory to become a Key of MIN. Still anatomy is the "House of Medicine”, giving a mental place to all knowledge, theories and biological functions. The "surgical simulation concept" of chapter 4 as trainings environment follows, also as a key-concept of MIN. In this chapter we draw the line from Gestalt-Anatomy to a Surgical Simulation Application in Pathological Anatomy exemplified in aneurysm cases. Chapter 5 presents the best preservation technique of anatomical perishable matter, forming durable, dry and odorless specimen of unknown precision and beauty. The scientific value of this unique technique and the benefit for MIN are shown by many examples.With the Plastination gallery of chapter 6 the best head-plastinates and sheet-plastinates of head and brain complete the volume. Many of the specimen have been shown around the globe in the famous exhibitions “body worlds“ (Prof. Dr. G. v. Hagens/Inventor of Plastination).
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them. Universal Algebra and Applications in Theoretical Computer Science introduces the basic concepts of universal algebra and surveys some of the newer developments in the field. The first half of the book provides a solid grounding in the core material. A leisurely pace, careful exposition, numerous examples, and exercises combine to form an introduction to the subject ideal for beginning graduate students or researchers from other areas. The second half of the book focuses on applications in theoretical computer science and advanced topics, including Mal'cev conditions, tame congruence theory, clones, and commutators. The impact of the advances in universal algebra on computer science is just beginning to be realized, and the field will undoubtedly continue to grow and mature. Universal Algebra and Applications in Theoretical Computer Science forms an outstanding text and offers a unique opportunity to build the foundation needed for further developments in its theory and in its computer science applications.
The purpose of this book is to study the structures needed to model objects in universal algebra, universal coalgebra and theoretical computer science. Universal algebra is used to describe different kinds of algebraic structures, while coalgebras are used to model state-based machines in computer science.The connection between algebras and coalgebras provides a way to connect static data-oriented systems with dynamical behavior-oriented systems. Algebras are used to describe data types and coalgebras describe abstract systems or machines.The book presents a clear overview of the area, from which further study may proceed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.