Infinite Divisibility of Probability Distributions on the Real Line reassesses classical theory and presents new developments, while focusing on divisibility with respect to convolution or addition of independent random variables. This definitive, example-rich text supplies approximately 100 examples to correspond with all major chapter topics and reviews infinite divisibility in light of the central limit problem. It contrasts infinite divisibility with finite divisibility, discusses the preservation of infinite divisibility under mixing for many classes of distributions, and investigates self-decomposability and stability on the nonnegative reals, nonnegative integers, and the reals.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.