The genius technology woman brought the system over the handsome brother comes to support me the king of assassins was used as a bodyguard destroying the marriage contract torturing the scum of a man and being so elegant and unrestrained.
This book focuses on picturing B-IoT techniques from a few perspectives, which are architecture, key technologies, security and privacy, service models and framework, practical use cases and more. Main contents of this book derive from most updated technical achievements or breakthroughs in the field. A number of representative IoT service offerings will be covered by this book, such as vehicular networks, document sharing system, and telehealth. Both theoretical and practical contents will be involved in this book in order to assist readers to have a comprehensive and deep understanding the mechanism of using blockchain for powering up IoT systems. The blockchain-enabled Internet of Things (B-IoT) is deemed to be a novel technical alternative that provides network-based services with additional functionalities, benefits, and implementations in terms of decentralization, immutability, and auditability. Towards the enhanced secure and privacy-preserving Internet of Things (IoT), this book introduces a few significant aspects of B-IoT, which includes fundamental knowledge of both blockchain and IoT, state-of-the-art reviews of B-IoT applications, crucial components in the B-IoT system and the model design, and future development potentials and trends. IoT technologies and services, e.g. cloud data storage technologies and vehicular services, play important roles in wireless technology developments. On the other side, blockchain technologies are being adopted in a variety of academic societies and professional realms due to its promising characteristics. It is observable that the research and development on integrating these two technologies will provide critical thinking and solid references for contemporary and future network-relevant solutions. This book targets researchers and advanced level students in computer science, who are focused on cryptography, cloud computing and internet of things, as well as electrical engineering students and researchers focused on vehicular networks and more. Professionals working in these fields will also find this book to be a valuable resource.
The book focuses on the advanced mmWave/Sub-terahertz ultra-massive MIMO wireless communications, which are regarded as a promising paradigm shift in future 5G beyond and even 6G. This is achieved by providing a comprehensive review of the rapidly developing field of massive MIMO communication, in-depth discussions on the impact of extremely large-scale antenna array, and detailed numerical simulation results on our proposed schemes. Several case studies are given after introducing basic communication system components, and the simulation codes are open sourced in our book, which shows the reproducibility of our models and methods and provides convenience for readers such as researchers, engineers, and graduate students in the fields of wireless communications.
This book addresses the security challenges facing the rapidly growing Internet of Things (IoT) industry, including the potential threats and risks arising from its complex architecture. The authors discuss the overall IoT architecture, covering networking, computing, and security threats and risks to hardware such as sensors, actuators, and portable devices, as well as infrastructure layers. They cover a range of technical concepts such as cryptography, distributed storage, and data transmission, and offer practical advice on implementing security solutions such as authentication and access control. By exploring the future of cybersecurity in the IoT industry, with insights into the importance of big data and the threats posed by data mining techniques, this book is an essential resource for anyone interested in, or working in, the rapidly evolving field of IoT security.
Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.