While voice is widely used in speech recognition and speaker identification, its application in biomedical fields is much less common. This book systematically introduces the authors’ research on voice analysis for biomedical applications, particularly pathological voice analysis. Firstly, it reviews the field to highlight the biomedical value of voice. It then offers a comprehensive overview of the workflow and aspects of pathological voice analysis, including voice acquisition systems, voice pitch estimation methods, glottal closure instant detection, feature extraction and learning, and the multi-audio fusion approaches. Lastly, it discusses the experimental results that have shown the superiority of these techniques. This book is useful to researchers, professionals and postgraduate students working in fields such as speech signal processing, pattern recognition, and biomedical engineering. It is also a valuable resource for those involved in interdisciplinary research.
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
While voice is widely used in speech recognition and speaker identification, its application in biomedical fields is much less common. This book systematically introduces the authors’ research on voice analysis for biomedical applications, particularly pathological voice analysis. Firstly, it reviews the field to highlight the biomedical value of voice. It then offers a comprehensive overview of the workflow and aspects of pathological voice analysis, including voice acquisition systems, voice pitch estimation methods, glottal closure instant detection, feature extraction and learning, and the multi-audio fusion approaches. Lastly, it discusses the experimental results that have shown the superiority of these techniques. This book is useful to researchers, professionals and postgraduate students working in fields such as speech signal processing, pattern recognition, and biomedical engineering. It is also a valuable resource for those involved in interdisciplinary research.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.