Carbon Nanotubes (CNT) is the material lying between fullerenes and graphite as a new member of carbon allotropes. The study of CNT has gradually become more and more independent from that of fullerenes. As a novel carbon material, CNTs will be far more useful and important than fullerenes from a practical point of view, in that they will be directly related to an ample field of nanotechnology. This book presents a timely, second-generation monograph covering as far as practical, application of CNT as the newest science of these materials. Most updated summaries for preparation, purification and structural characterisation of single walled CNT and multi walled CNT are given. Similarly, the most recent developments in the theoretical treatments of electronic structures and vibrational structures are covered. The newest magnetic, optical and electrical solid-state properties providing a vital base to actual application technologies are described. Explosive research trends towards application of CNTs, including the prospect for large-scale synthesis, are also introduced. It is the most remarkable feature of this monograph that it devotes more than a half of the whole volume to practical aspects and offers readers the newest developments of the science and technological aspects of CNTs.
This book presents active application aspects of theoretical chemistry, and is particularly intended for experimental chemists, ranging from graduate students to more professional researchers, who are developing new materials or searching for novel properties of the materials they work with. It not only addresses the fundamental aspects of theoretical chemistry but also provides abundant examples of applications based on the electronic structure analyses of actual systems. As the book demonstrates, these analyses can deepen our understanding of a variety of chemical phenomena, including the chemical reactivities and electronic properties of substances, in a bottom-up manner. By illustrating how electronic structure analyses can be effectively applied, the book introduces readers to the impressive potential of theoretical chemistry, which they can adapt for their own purposes, and without having to suffer through a parade of complex formulae.
Ultrafast lasers allow high-precision imaging and manipulation for biological and medical applications. Nonlinear optical microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues. Nonlinear optical imaging technique is a rapidly emerging research area with widespread fundamental research and clinical applications. Nonlinear optical imaging allows both structural and functional imaging with cellular level resolution imaging in biological systems. The introduction of endogenous or exogenous probes can selectively enhance contrast for molecular targets in a living cell as well as supply functional information on processes. With the aim to control nonlinear optical processes and to obtain functional images, nonlinear optical processes can be controlled by photo-controlled probes and/or parameters of ultrafast laser pulses, such as time, space, polarization, and phase. This book gives an overview of the nonlinear optical process by ultrafast laser pulses and explains how the basics of nonlinear optical microscopy led to the most advanced techniques of photo-controlled nonlinear optical microscopy.
After devastating vast ranges of pine forests in Asian countries, Pine Wilt disease invaded European forests, becoming a worldwide threat. Originating in North America, the pathogen of this forest epidemic is a nematode, a long filamentous organism, only 1mm in length. Nematodes are carried from tree to tree by a long-horned beetle, where they lurk in its trachea and thereby spread the disease. The challenges raised for researchers to develop effective control methods were to discover how such tiny nematodes infect and kill large pine trees within a short period, and how the infection spreads repeatedly each year. Other key issues include how giant pine trees die within a short period of time due to infection by these small nematodes, how various organisms involved in this disease correlate to each other, how host trees differently respond to nematode invasion among pine species, and how environmental factors affect the progression and spread of the disease. This book is a record of the fantastic and ingenious research by many tenacious researchers who have worked to clarify these issues. Information on a wide range of fields, from molecular biology to microbiology, nematology, entomology, botany, and ecology, has been incorporated into pine wilt research. Therefore, this book will greatly stimulate the curiosity and research motivation of those interested in field biology and the conservation of the natural environment.
Two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.
Carbon Nanotubes (CNT) is the material lying between fullerenes and graphite as a new member of carbon allotropes. The study of CNT has gradually become more and more independent from that of fullerenes. As a novel carbon material, CNTs will be far more useful and important than fullerenes from a practical point of view, in that they will be directly related to an ample field of nanotechnology. This book presents a timely, second-generation monograph covering as far as practical, application of CNT as the newest science of these materials. Most updated summaries for preparation, purification and structural characterisation of single walled CNT and multi walled CNT are given. Similarly, the most recent developments in the theoretical treatments of electronic structures and vibrational structures are covered. The newest magnetic, optical and electrical solid-state properties providing a vital base to actual application technologies are described. Explosive research trends towards application of CNTs, including the prospect for large-scale synthesis, are also introduced. It is the most remarkable feature of this monograph that it devotes more than a half of the whole volume to practical aspects and offers readers the newest developments of the science and technological aspects of CNTs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.