Over the past few decades, carbon nanomaterials, most commonly fullerenes, carbon nanotubes, and graphene, have gained increasing interest in both science and industry, due to their advantageous properties that make them attractive for many applications in nanotechnology. Another class of the carbon nanomaterials family that has slowly been gaining (re)newed interest is diamond molecules, also called diamondoids, which consist of polycyclic carbon cages that can be superimposed on a cubic diamond lattice. Derivatives of diamondoids are used in pharmaceutics, but due to their promising properties—well-defined structures, high thermal and chemical stability, negative electron affinity, and the possibility to tune their bandgap—diamondoids could also serve as molecular building blocks in future nanodevices. This book is the first of its kind to give an exhaustive overview of the structures, properties, and current and possible future applications of diamondoids. It contains a brief historical account of diamondoids, from the discovery of the first diamondoid member, adamantane, to the isolation of higher diamondoids about a decade ago. It summarizes the different approaches to synthesizing diamondoids. In particular, current research on the conventional organic synthesis and new approaches based on microplasmas generated in high-pressure and supercritical fluids are reviewed and the advantages and disadvantages of the different methods discussed. The book will serve as a reference for advanced undergraduate- and graduate-level students in chemistry, physics, materials science, and nanotechnology and researchers in macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in nanoparticles.
Crystal Growth of Si Ingots for Solar Cells Using Cast Furnaces is the first book written to both comprehensively describe these concepts and technologies and compare the strengths and weaknesses of various techniques. Readers will learn about the basic growth and characterization of Si crystals, including sections on the history of cast methods for Si ingots for solar cells. Methods discussed include the dendrite cast method, as well as other significant technologies, including the high-performance (HP) cast and mono-like cast methods. These concepts, growth mechanisms, growth technologies, and the problems that still need to be solved are all included in this comprehensive volume. - Covers the concept of crystal growth, providing an understanding of each growth method - Discusses the quality of Si ingot, mainly from the viewpoint of crystal defects and their control - Reviews fundamental characterization concepts to discern the quality of ingots and wafers - Discusses concepts and technologies to establish a low-temperature region in a Si melt using the NOC method in order to obtain a uniform and large Si single ingot with low stress
Over the past few decades, carbon nanomaterials, most commonly fullerenes, carbon nanotubes, and graphene, have gained increasing interest in both science and industry, due to their advantageous properties that make them attractive for many applications in nanotechnology. Another class of the carbon nanomaterials family that has slowly been gaining (re)newed interest is diamond molecules, also called diamondoids, which consist of polycyclic carbon cages that can be superimposed on a cubic diamond lattice. Derivatives of diamondoids are used in pharmaceutics, but due to their promising properties—well-defined structures, high thermal and chemical stability, negative electron affinity, and the possibility to tune their bandgap—diamondoids could also serve as molecular building blocks in future nanodevices. This book is the first of its kind to give an exhaustive overview of the structures, properties, and current and possible future applications of diamondoids. It contains a brief historical account of diamondoids, from the discovery of the first diamondoid member, adamantane, to the isolation of higher diamondoids about a decade ago. It summarizes the different approaches to synthesizing diamondoids. In particular, current research on the conventional organic synthesis and new approaches based on microplasmas generated in high-pressure and supercritical fluids are reviewed and the advantages and disadvantages of the different methods discussed. The book will serve as a reference for advanced undergraduate- and graduate-level students in chemistry, physics, materials science, and nanotechnology and researchers in macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in nanoparticles.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.