Motivated learning is an emerging research field in artificial intelligence and cognitive modelling. Computational models of motivation extend reinforcement learning to adaptive, multitask learning in complex, dynamic environments – the goal being to understand how machines can develop new skills and achieve goals that were not predefined by human engineers. In particular, this book describes how motivated reinforcement learning agents can be used in computer games for the design of non-player characters that can adapt their behaviour in response to unexpected changes in their environment. This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The authors start with overviews of motivation and reinforcement learning, then describe models for motivated reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended virtual world. Researchers in artificial intelligence, machine learning and artificial life will benefit from this book, as will practitioners working on complex, dynamic systems – in particular multiuser, online games.
The focus of this book is on three influential cognitive motives: achievement, affiliation, and power motivation. Incentive-based theories of achievement, affiliation and power motivation are the basis for competence-seeking behaviour, relationship-building, leadership, and resource-controlling behaviour in humans. In this book we show how these motives can be modelled and embedded in artificial agents to achieve behavioural diversity. Theoretical issues are addressed for representing and embedding computational models of motivation in rule-based agents, learning agents, crowds and evolution of motivated agents. Practical issues are addressed for defining games, mini-games or in-game scenarios for virtual worlds in which computer-controlled, motivated agents can participate alongside human players. The book is structured into four parts: game playing in virtual worlds by humans and agents; comparing human and artificial motives; game scenarios for motivated agents; and evolution and the future of motivated game-playing agents. It will provide game programmers, and those with an interest in artificial intelligence, with the knowledge required to develop diverse, believable game-playing agents for virtual worlds.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.