This book is a self-contained text devoted to the numerical determination of optimal inputs for system identification. It presents the current state of optimal inputs with extensive background material on optimization and system identification. The field of optimal inputs has been an area of considerable research recently with important advances by R. Mehra, G. c. Goodwin, M. Aoki, and N. E. Nahi, to name just a few eminent in vestigators. The authors' interest in optimal inputs first developed when F. E. Yates, an eminent physiologist, expressed the need for optimal or preferred inputs to estimate physiological parameters. The text assumes no previous knowledge of optimal control theory, numerical methods for solving two-point boundary-value problems, or system identification. As such it should be of interest to students as well as researchers in control engineering, computer science, biomedical en gineering, operations research, and economics. In addition the sections on beam theory should be of special interest to mechanical and civil en gineers and the sections on eigenvalues should be of interest to numerical analysts. The authors have tried to present a balanced viewpoint; however, primary emphasis is on those methods in which they have had first-hand experience. Their work has been influenced by many authors. Special acknowledgment should go to those listed above as well as R. Bellman, A. Miele, G. A. Bekey, and A. P. Sage. The book can be used for a two-semester course in control theory, system identification, and optimal inputs.
For many years it has been an article of faith of numerical analysts that the evaluation of derivatives of complicated functions should be avoided. Derivatives were evaluated using finite differences or, more recently, using symbolic manipulation packages. The first has the disadvantage of limited accuracy. The second has disadvantages of being expensive and requiring considerable computer memory. The recent developments described in this text allow the evaluation of derivatives using simple automatic derivative evaluation subroutines pro grammed in FORTRAN or BASIC. These subroutines can even be programmed on a personal computer. The concept for the evaluation of the derivatives was originally developed by Wengert over 20 years ago. Significant im provements have been made in Wengert's method and are utilized in this text. The purpose of this text is to familiarize computer users with a simple and practical method for obtaining the partial derivatives of complicated mathematical expressions. The text illustrates the use of automatic deriva tive evaluation subroutines to solve a wide range of nonlinear least-squares, optimal control, system identification, two-point boundary value problems, and integral equations. The numerical values of the derivatives are evalu~ ated exactly, except for roundoff, using simple FORTRAN or BASIC sub routines. These derivatives are derived automatically behind the scenes, from the equivalent of analytical expressions, without any effort from the user. The use of costly software packages is not required.
Here, eagerly anticipated, is the definitive biography of Elijah Muhammad (né Elija Poole), a sharecropper's son with a fourth- grade education who became one of the most controversial Americans of the twentieth century, the founder and "Prophet" of the Nation of Islam, a movement dedicated to black separatism and self-empowerment. Though Muhammad's main argument--that white people were innately evil ("devils," he called them)--ran counter to the precepts of orthodox Islam, he was the chief influence in the conversion of nearly four million African Americans to Islam, touching in the process the lives of figures ranging from Muhammad Ali and Jesse Jackson to Malcolm X and Louis Farrakhan. But in his desperate grasp for power, Muhammad also amassed a huge personal fortune at the expense of his followers. He was a party to ritualistic homicides, had illicit affairs galore, and was quick to betray his friends and charges, most notably Malcolm X. In brief, he violated every ideal and principle that he espoused. With the cooperation of some of Elijah Muhammad's children and former apostles and with access to previously unreleased FBI files, Karl Evanzz gives us an unprecedented account of the life of the man whose philosophy continues, long after his death, to shape race relations in America.
-Selected papers on Renaissance philosophy and on Thomas Hobbes offers the best work in these fields by the acclaimed historian of philosophy, Karl Schuhmann (1941-2003), displaying the extraordinary range and depth of his unique scholarship, -Topics covered include Renaissance philosophy of nature; the development of the notion of time in early modern philosophy; Telesio's concept of space; Hermetic influences on Pico, Patrizi and Hobbes; Hobbes's Short Tract; Spinoza and Hobbes; Hobbes's political philosophy, -This book brings together, in chronological arrangement, twelve papers. Though these were published before in some form, several were not easily accessible so far, -All articles have been edited in accordance with the author's wishes, and incorporate his later additions and corrections
This book is a self-contained text devoted to the numerical determination of optimal inputs for system identification. It presents the current state of optimal inputs with extensive background material on optimization and system identification. The field of optimal inputs has been an area of considerable research recently with important advances by R. Mehra, G. c. Goodwin, M. Aoki, and N. E. Nahi, to name just a few eminent in vestigators. The authors' interest in optimal inputs first developed when F. E. Yates, an eminent physiologist, expressed the need for optimal or preferred inputs to estimate physiological parameters. The text assumes no previous knowledge of optimal control theory, numerical methods for solving two-point boundary-value problems, or system identification. As such it should be of interest to students as well as researchers in control engineering, computer science, biomedical en gineering, operations research, and economics. In addition the sections on beam theory should be of special interest to mechanical and civil en gineers and the sections on eigenvalues should be of interest to numerical analysts. The authors have tried to present a balanced viewpoint; however, primary emphasis is on those methods in which they have had first-hand experience. Their work has been influenced by many authors. Special acknowledgment should go to those listed above as well as R. Bellman, A. Miele, G. A. Bekey, and A. P. Sage. The book can be used for a two-semester course in control theory, system identification, and optimal inputs.
For many years it has been an article of faith of numerical analysts that the evaluation of derivatives of complicated functions should be avoided. Derivatives were evaluated using finite differences or, more recently, using symbolic manipulation packages. The first has the disadvantage of limited accuracy. The second has disadvantages of being expensive and requiring considerable computer memory. The recent developments described in this text allow the evaluation of derivatives using simple automatic derivative evaluation subroutines pro grammed in FORTRAN or BASIC. These subroutines can even be programmed on a personal computer. The concept for the evaluation of the derivatives was originally developed by Wengert over 20 years ago. Significant im provements have been made in Wengert's method and are utilized in this text. The purpose of this text is to familiarize computer users with a simple and practical method for obtaining the partial derivatives of complicated mathematical expressions. The text illustrates the use of automatic deriva tive evaluation subroutines to solve a wide range of nonlinear least-squares, optimal control, system identification, two-point boundary value problems, and integral equations. The numerical values of the derivatives are evalu~ ated exactly, except for roundoff, using simple FORTRAN or BASIC sub routines. These derivatives are derived automatically behind the scenes, from the equivalent of analytical expressions, without any effort from the user. The use of costly software packages is not required.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.