This book is designed both as a textbook for high-level graduate courses and as a reference for researchers who need to apply the structure and representation theory of compact groups. A gentle introduction to compact groups and their representation theory is followed by self-contained courses on linear and compact Lie groups, and on locally compact abelian groups. This fourth edition was updated with the latest developments in the field.
This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin’s pioneering work generalizing to locally compact groups Iwasawa’s early investigations of the lattice of subgroups of abstract groups. Contents Part I: Background information on locally compact groups Locally compact spaces and groups Periodic locally compact groups and their Sylow theory Abelian periodic groups Scalar automorphisms and the mastergraph Inductively monothetic groups Part II: Near abelian groups The definition of near abelian groups Important consequences of the definitions Trivial near abelian groups The class of near abelian groups The Sylow structure of periodic nontrivial near abelian groups and their prime graphs A list of examples Part III: Applications Classifying topologically quasihamiltonian groups Locally compact groups with a modular subgroup lattice Strongly topologically quasihamiltonian groups
In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under nature reductions setting aside the "group part" of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists. The main protagonists on the scene are SL(2, R) and its universal covering group, almost abelian solvable Lie groups (ie. vector groups extended by homotheties), and compact Lie groups. This text will also be of interest to those working in algebra and algebraic geometry.
Of all topological algebraic structures compact topological groups have perhaps the richest theory since 80 many different fields contribute to their study: Analysis enters through the representation theory and harmonic analysis; differential geo metry, the theory of real analytic functions and the theory of differential equations come into the play via Lie group theory; point set topology is used in describing the local geometric structure of compact groups via limit spaces; global topology and the theory of manifolds again playa role through Lie group theory; and, of course, algebra enters through the cohomology and homology theory. A particularly well understood subclass of compact groups is the class of com pact abelian groups. An added element of elegance is the duality theory, which states that the category of compact abelian groups is completely equivalent to the category of (discrete) abelian groups with all arrows reversed. This allows for a virtually complete algebraisation of any question concerning compact abelian groups. The subclass of compact abelian groups is not so special within the category of compact. groups as it may seem at first glance. As is very well known, the local geometric structure of a compact group may be extremely complicated, but all local complication happens to be "abelian". Indeed, via the duality theory, the complication in compact connected groups is faithfully reflected in the theory of torsion free discrete abelian groups whose notorious complexity has resisted all efforts of complete classification in ranks greater than two.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.