The book Function-oriented bioengineered skin equivalents - continuous development towards complete skin replication aims to provide potential readers with a comprehensive summary of the available information on various in vitro skin models, from historical background to different modeling approaches and their applications. Particular emphasis is placed on presenting the current technological components available for the development of engineered skin equivalents by summarizing advances in cell cultivation, materials science, and bioengineering. Using examples of the current-state-of-art, we describe the advantages, limitations, and challenges of developing in vitro skin models for successful use in clinical applications and skin-related research.
The authors describe how sustainable textile fibers from crops such as quinoa, grass, hops, corn and wheat stems, etc. have recently begun to generate great interest. The structure-property relationships of such non-conventional cellulose fibers are studied in this brief, as are their sorption and surface properties which are of primary importance. A systematic review of each fiber's properties is given, the emphasis is placed on the water sorption capacity, the fiber's surface potential, and fibrillation properties.
This is the first concise book that includes different aspects of naturally-derived components for wound healing. It presents the first exhaustive review of modern techniques in wound dressing development. With a growing, ageing population and the rapid growth of the wound-care market, the authors explore the current trend of bio-based products (active components and host materials) in this field. After a short introduction into modern solutions in wound-care and modern techniques in wound-dressing development, the authors, leaders in the field, explore natural-based components (drugs, extracts, materials etc.); safety and efficiency assessments (biocompatibility, cytotoxicity and in vitro performance etc.); and model films as a platform for the development of new wound dressings.
This is the first concise book that includes different aspects of naturally-derived components for wound healing. It presents the first exhaustive review of modern techniques in wound dressing development. With a growing, ageing population and the rapid growth of the wound-care market, the authors explore the current trend of bio-based products (active components and host materials) in this field. After a short introduction into modern solutions in wound-care and modern techniques in wound-dressing development, the authors, leaders in the field, explore natural-based components (drugs, extracts, materials etc.); safety and efficiency assessments (biocompatibility, cytotoxicity and in vitro performance etc.); and model films as a platform for the development of new wound dressings.
The authors describe how sustainable textile fibers from crops such as quinoa, grass, hops, corn and wheat stems, etc. have recently begun to generate great interest. The structure-property relationships of such non-conventional cellulose fibers are studied in this brief, as are their sorption and surface properties which are of primary importance. A systematic review of each fiber's properties is given, the emphasis is placed on the water sorption capacity, the fiber's surface potential, and fibrillation properties.
The book Function-oriented bioengineered skin equivalents - continuous development towards complete skin replication aims to provide potential readers with a comprehensive summary of the available information on various in vitro skin models, from historical background to different modeling approaches and their applications. Particular emphasis is placed on presenting the current technological components available for the development of engineered skin equivalents by summarizing advances in cell cultivation, materials science, and bioengineering. Using examples of the current-state-of-art, we describe the advantages, limitations, and challenges of developing in vitro skin models for successful use in clinical applications and skin-related research.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.