The impulse which led to the writing of the present book has emerged from my many years of lecturing in special courses for selected students at the College of Civil Engineering of the Tech nical University in Prague, from experience gained as supervisor and consultant to graduate students-engineers in the field of applied mathematics, and - last but not least - from frequent consultations with technicians as well as with physicists who have asked for advice in overcoming difficulties encountered in solving theoretical problems. Even though a varied combination of problems of the most diverse nature was often in question, the problems discussed in this book stood forth as the most essential to this category of specialists. The many discussions I have had gave rise to considerations on writing a book which should fill the rather unfortunate gap in our literature. The book is designed, in the first place, for specialists in the fields of theoretical engineering and science. However, it was my aim that the book should be of interest to mathematicians as well. I have been well aware what an ungrateful task it may be to write a book of the present type, and what problems such an effort can bring: Technicians and physicists on the one side, and mathematicians on the other, are often of diametrically opposing opinions as far as books con ceived for both these categories are concerned.
This book provides an elementary, accessible introduction for engineers and scientists to the concepts of ordinary and partial boundary value problems, acquainting readers with fundamental properties and with efficient methods of constructing solutions or satisfactory approximations. Discussions include: ordinary differential equations classical theory of partial differential equations Laplace and Poisson equations heat equation variational methods of solution of corresponding boundary value problems methods of solution for evolution partial differential equations The author presents special remarks for the mathematical reader, demonstrating the possibility of generalizations of obtained results and showing connections between them. For the non-mathematician, the author provides profound functional-analytical results without proofs and refers the reader to the literature when necessary. Solving Ordinary and Partial Boundary Value Problems in Science and Engineering contains essential functional analytical concepts, explaining its subject without excessive abstraction.
Mathematical models are powerful tools used in the prediction of pollutant movement. This book discusses the Finite Element Method (FEM) and Boundary Element Method (BEM), and takes a look at the advantages of these methods in groundwater hydrology. The combination of the BEM and the random-walk particle tracking method is also presented. The book includes computer programs, source code, and examples developed on the basis of the theoretical backgrounds of these methods. These Visual C++ programs are compatible with the Windows platform.
The acclaimed novel We Were a Handful is the humorous story of five small-town boys. In 1943 during one of the lowest points of his life – as he awaited his deportation to Theresienstadt – Karel Poláček recalled his youth, inviting readers to see the world through the eyes of a child. Written as a first-person narrative from one of the boys, the natural humor of the material is intensified by the language of the narrator as he attempts a grandiose tone to satirize and celebrate the people of his town. Poláček masterfully avoids the clichés of childhood naïveté as he weaves his tales of adventures, battles with the boys from a neighboring village, and first love – as well as the clash between the fantastic world of children and the prosaic world of adults. With We Were a Handful Karel Poláček beautifully portrays the world of a child from a Jewish family on the eve of tragedy. „Conveys how humour can deal with tragedy… There is actually a lot of humanity in it.” —David Vaughan, www.radio.cz
The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and
The impulse which led to the writing of the present book has emerged from my many years of lecturing in special courses for selected students at the College of Civil Engineering of the Tech nical University in Prague, from experience gained as supervisor and consultant to graduate students-engineers in the field of applied mathematics, and - last but not least - from frequent consultations with technicians as well as with physicists who have asked for advice in overcoming difficulties encountered in solving theoretical problems. Even though a varied combination of problems of the most diverse nature was often in question, the problems discussed in this book stood forth as the most essential to this category of specialists. The many discussions I have had gave rise to considerations on writing a book which should fill the rather unfortunate gap in our literature. The book is designed, in the first place, for specialists in the fields of theoretical engineering and science. However, it was my aim that the book should be of interest to mathematicians as well. I have been well aware what an ungrateful task it may be to write a book of the present type, and what problems such an effort can bring: Technicians and physicists on the one side, and mathematicians on the other, are often of diametrically opposing opinions as far as books con ceived for both these categories are concerned.
This book provides an elementary, accessible introduction for engineers and scientists to the concepts of ordinary and partial boundary value problems, acquainting readers with fundamental properties and with efficient methods of constructing solutions or satisfactory approximations. Discussions include: ordinary differential equations classical theory of partial differential equations Laplace and Poisson equations heat equation variational methods of solution of corresponding boundary value problems methods of solution for evolution partial differential equations The author presents special remarks for the mathematical reader, demonstrating the possibility of generalizations of obtained results and showing connections between them. For the non-mathematician, the author provides profound functional-analytical results without proofs and refers the reader to the literature when necessary. Solving Ordinary and Partial Boundary Value Problems in Science and Engineering contains essential functional analytical concepts, explaining its subject without excessive abstraction.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.