Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.
The book provides necessary knowledge for readers interested in developing the theory of uniform experimental design. It discusses measures of uniformity, various construction methods of uniform designs, modeling techniques, design and modeling for experiments with mixtures, and the usefulness of the uniformity in block, factorial and supersaturated designs. Experimental design is an important branch of statistics with a long history, and is extremely useful in multi-factor experiments. Involving rich methodologies and various designs, it has played a key role in industry, technology, sciences and various other fields. A design that chooses experimental points uniformly scattered on the domain is known as uniform experimental design, and uniform experimental design can be regarded as a fractional factorial design with model uncertainty, a space-filling design for computer experiments, a robust design against the model specification, and a supersaturated design and can be applied to experiments with mixtures.
Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experim
The book Control of Nonlinear Systems–Stability and Performance fills a crucial gap in the field of nonlinear control systems by providing a comprehensive yet accessible treatment of the subject. Unlike many existing texts that are either too complex for beginners or omit essential topics, this book strikes the right balance of mathematical rigor and practicality. The main objective of the book is to simplify and unify the existing techniques for designing and analyzing control systems for nonlinear systems. It aims to alleviate confusion and difficulty in understanding these methods, making it an invaluable resource for students, researchers, and practitioners in the field. By presenting the material in a tutorial manner, the book enhances the reader's understanding of the design and analysis of a wide range of control methods for nonlinear systems. The emphasis on stability and performance highlights the practical relevance of the concepts discussed in the book. Overall, Control of Nonlinear Systems–Stability and Performance is a valuable contribution to the field of nonlinear control systems. Its emphasis on practical applications and its accessible presentation make it an indispensable resource for engineers seeking to enhance their knowledge and skills in this important area of control theory.
Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.