In this book, meshes and networks formed out of multiwalled carbon nanotubes are investigated and analyzed, including their use in niche applications such as electro-optic devices, advanced mechanical, thermal and electrical property enhancement, and gene editing. Different properties of multi-walled carbon nanotubes, including random network formation, ordering the meshes and networks by mechanical agitation and application of an external field, using crystallization and cross-linking induced phase separation in homopolymers-CNT composites are discussed with theoretical analysis. The book is aimed at researchers and graduate students in Electrical Engineering; Materials Science and Engineering; Chemical Engineering and Nanotechnology, Electronic circuit design, manufacturing, and characterization.
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
In this book, meshes and networks formed out of multiwalled carbon nanotubes are investigated and analyzed, including their use in niche applications such as electro-optic devices, advanced mechanical, thermal and electrical property enhancement, and gene editing. Different properties of multi-walled carbon nanotubes, including random network formation, ordering the meshes and networks by mechanical agitation and application of an external field, using crystallization and cross-linking induced phase separation in homopolymers-CNT composites are discussed with theoretical analysis. The book is aimed at researchers and graduate students in Electrical Engineering; Materials Science and Engineering; Chemical Engineering and Nanotechnology, Electronic circuit design, manufacturing, and characterization.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.