In this book the authors for the first time have merged vertices and edges of lattices to get a new structure which may or may not be a lattice but is always a graph. This merging is done for graph too which will be used in the merging of fuzzy models. Further merging of graphs leads to the merging of matrices; both these concepts play a vital role in merging the fuzzy and neutrosophic models. Several open conjectures are suggested.
In this book the authors for the first time have ventured to study, analyse and investigate fuzzy and neutrosophic models and the experts opinion. To make such a study, innovative techniques and defined and developed. Several important conclusions about these models are derived using these new techniques. Open problems are suggested in this book.
This book introduces special classes of Fuzzy and Neutrosophic Matrices. These special classes of matrices are used in the construction of multi-expert special fuzzy models using FCM, FRM and FRE and their Neutrosophic analogues (simultaneous or otherwise according to ones need). Using the six basic models, we have constructed a multi-expert multi-model called Super Special Hexagonal Fuzzy and Neutrosophic Model.Given any special input vector, these models can give the resultant using special operations. When coupled with computer programming, these operations can give the solution within a reasonable time period.Such multi-expert multi-model systems are not only a boon to social scientists, but also to anyone who wants to use Fuzzy and Neutrosophic Models.
In this book authors for the first time introduce the notion of distance between any two m x n matrices. If the distance is 0 or m x n there is nothing interesting.
Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.
In this book the notion of MOD functions are defined on MOD planes. This new concept of MOD functions behaves in a very different way. Even very simple functions like y = nx has several zeros in MOD planes where as they are nice single line graphs with only (0, 0) as the only zero. Further polynomials in MOD planes do not in general follows the usual or classical laws of differentiation or integration.
A new dimension is given to modulo theory by defining MOD planes. In this book, the authors consolidate the entire four quadrant plane into a single quadrant plane defined as the MOD planes. MOD planes can be transformed to infinite plane and vice versa. Several innovative results in this direction are obtained. This paradigm shift will certainly lead to new discoveries.
In this book the authors define, describe, and develop the notion of complex valued graphs, complex neutrosophic valued graphs, and mod complex valued graphs in a systematic way. However complex neural networks have been analyzed and studied as early as 2003. This book gives several applications of them in medical diagnosis, soft computing, and so on.
Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.
In this book we define new operations mainly to construct mathematical models akin to Fuzzy Cognitive Maps (FCMs) model, Neutrosophic Cognitive Maps (NCMs) model and Fuzzy Relational Maps (FRMs) model. These new models are defined in chapter four of this book. These new models can find applications in discrete Artificial Neural Networks, soft computing, and social network analysis whenever the concept of indeterminate is involved.
In this book authors for the first time introduce the notion of strong neutrosophic graphs. They are very different from the usual graphs and neutrosophic graphs. Using these new structures special subgraph topological spaces are defined. Further special lattice graph of subgraphs of these graphs are defined and described. Several interesting properties using subgraphs of a strong neutrosophic graph are obtained. Several open conjectures are proposed. These new class of strong neutrosophic graphs will certainly find applications in Neutrosophic Cognitive Maps (NCM), Neutrosophic Relational Maps (NRM) and Neutrosophic Relational Equations (NRE) with appropriate modifications.
In this book authors for the first time introduce a special type of fixed points using MOD square matrix operators. These special type of fixed points are different from the usual classical fixed points. These special type of fixed points or special realized limit cycles are always guaranteed as we use only MOD matrices as operators with its entries from modulo integers. However this sort of results are NP hard problems if we use reals or complex numbers.
In this book authors for the first time construct non-associative algebraic structures on the MOD planes. Using MOD planes we can construct infinite number of groupoids for a fixed m and all these MOD groupoids are of infinite cardinality. Special identities satisfied by these MOD groupoids build using the six types of MOD planes are studied. Further, the new concept of special pseudo zero of these groupoids are defined, described and developed. Also conditions for these MOD groupoids to have special elements like idempotent, special pseudo zero divisors and special pseudo nilpotent are obtained. Further non-associative MOD rings are constructed using MOD groupoids and commutative rings with unit. That is the MOD groupoid rings gives infinitely many non-associative ring. These rings are analysed for substructures and special elements. This study is new and innovative and several open problems are suggested.
The main purpose of this book is to define and develop the notion of multi-dimensional MOD planes. Here, several interesting features enjoyed by these multi-dimensional MOD planes are studied and analyzed. Interesting problems are proposed to the reader.
The study of MOD Structures is new and innovative. The authors in this book propose several problems on MOD Structures, some of which are at the research level.
The authors in this book introduce a new class of natural neutrsophic numbers using MOD intervals. These natural MOD neutrosophic numbers behave in a different way for the product of two natural neutrosophic numbers can be neutrosophic zero divisors or idempotents or nilpotents. Several open problems are suggested in this book.
Authors in this book study the notion of Smarandache element in multiset semigroups. It is important to keep on record that we define four operations on multisets viz. +, X, union and intersection in a free way. Thus all sets finite or infinite order contribute to infinite order multisets and the semigroup under any of these operations is of infinite order.
In this book the notion of semigroups under + is constructed using: the MOD natural neutrosophic integers, or MOD natural neutrosophic-neutrosophic numbers, or MOD natural neutrosophic finite complex modulo integer, or MOD natural neutrosophic dual number integers, or MOD natural neutrosophic special dual like number, or MOD natural neutrosophic special quasi dual numbers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.