Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many more -- all products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume.The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including: À Evolution of the technology from geology to widespread industrial use. À Descriptions of equipment used in the process and how it works.À Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues.À Analysis of the direction of today's technology. In addition, readers get a close look at the hydrothermal synthesis of zeolites, fluorides, sulfides, tungstates, and molybdates, as well as native elements and simple oxides. Delving into the commercial production of various types, the authors clarify the effects of temperature, pressure, solvents, and various other chemical components on the hydrothermal processes. - Gives an overview of the evolution of Hydrothermal Technology from geology to widespread industrial use - Describes the equipment used in the process and how it works - Discusses problems involved with the growth of crystals, processing of technological materials, and environmental and safety issues
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.
The book will describe various technologies that use pressurized solvents for synthesis and processing of nanomaterials, including hydrothermal, solvothermal and supercritical fluid technologies. Written by two world-renowned experts in the area, the book will provide information on: Pressurized solvents technologies: principles of technologies (hydrothermal, solvothermal, and supercritical fluids), the systems, reactions, established applications; Pressurized solvents technologies in processing of nanomaterials: importance, technological advantages, principles, and system requirements controlling factors: physical, chemical and hydrodynamic factors, thermodynamic principles, solubility and kinetics of crystallization equipment: reactors and reactor design, and safety issues engineering considerations: process design for various applications
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.