The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .
Corrections: From Research, to Policy, to Practice offers students a 21st-century look into the treatment and rehabilitative themes that drive modern-day corrections. Written by two academic scholars and former practitioners, Mary K. Stohr and Anthony Walsh, this book provides students with a comprehensive and practical understanding of corrections, as well as coverage of often-overlooked topics like ethics, comparative corrections, offender classification and assessment, treatment modalities, and specialty courts. This text expertly weaves together research, policy, and practice, enabling students to walk away with a foundational understanding of effective punishment and treatment strategies for offenders in U.S. correctional institutions.
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
The communication of knowledge on nonlinear dynamical systems, between the mathematicians working on the analytic approach and the scientists working mostly on the applications and numerical simulations has been less than ideal. This volume hopes to bridge the gap between books written on the subject by mathematicians and those written by scientists. The second objective of this volume is to draw attention to the need for cross-fertilization of knowledge between the physical and biological scientists. The third aim is to provide the reader with a personal guide on the study of global nonlinear dynamical systems.
The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
Topics in Random Polynomials presents a rigorous and comprehensive treatment of the mathematical behavior of different types of random polynomials. These polynomials-the subject of extensive recent research-have many applications in physics, economics, and statistics. The main results are presented in such a fashion that they can be understood and used by readers whose knowledge of probability incorporates little more than basic probability theory and stochastic processes.
With interest in the study of nonlinear systems at an all-time high, researchers are eager to explore the mysteries behind the nonlinear equations that govern various physical processes. Painléve analysis may be the only tool available that allows the analysis of both integrable and non-integrable systems. With a primary objective of introducing the uninitiated to the various techniques of the Painlevé approach, this monograph brings together the results of the extensive research performed in the field over the last few decades. For the first time in a single volume, this book offers treatment of both the theory of Painlevé analysis and its practical applications. In it, the author addresses the soliton and nonlinearity, Painlevé analysis and the integrability of ordinary and partial differential equations, Painlevé properties, different forms of expansion, and the relation of Painlevé expansion with conformal invariance. He also gives a detailed account of negative resonances, explains the connection with monodromy, and demonstrates applications to specific important equations. Painlevé Analysis and Its Applications offers a clear presentation and down-to-earth approach that includes many examples and requires only a basic understanding of complex function theory and differential equations.
This book addresses a significant research gap by delving into the Finance Business Partnering (FBP) model within the not-for-profit sector of the Gulf countries, with a specific emphasis on Qatar Foundation. While an extensive body of literature explores the FBP model in developed nations, there exists a notable dearth of research in the Middle East and third-world countries. The book aims to rectify this imbalance by offering practical insights derived from Qatar Foundation, showcasing the advantages of adopting the FBP model. It goes beyond theoretical frameworks, presenting in-depth data analysis that substantiates the pivotal role of FBPs in supporting effective decision-making processes. By delving into essential concepts such as change management, contingency theory, and organizational culture, the book provides a comprehensive understanding of the factors influencing the successful adoption and implementation of the FBP model. Notably, it introduces practical examples and real-world applications to underscore the model’s efficacy, making it a valuable resource for both scholars and practitioners in the fields of management and financial accounting.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.