This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.
Extending Explanation-Based Learning by Generalizing the Structure of Explanations presents several fully-implemented computer systems that reflect theories of how to extend an interesting subfield of machine learning called explanation-based learning. This book discusses the need for generalizing explanation structures, relevance to research areas outside machine learning, and schema-based problem solving. The result of standard explanation-based learning, BAGGER generalization algorithm, and empirical analysis of explanation-based learning are also elaborated. This text likewise covers the effect of increased problem complexity, rule access strategies, empirical study of BAGGER2, and related work in similarity-based learning. This publication is suitable for readers interested in machine learning, especially explanation-based learning.
This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.
Extending Explanation-Based Learning by Generalizing the Structure of Explanations presents several fully-implemented computer systems that reflect theories of how to extend an interesting subfield of machine learning called explanation-based learning. This book discusses the need for generalizing explanation structures, relevance to research areas outside machine learning, and schema-based problem solving. The result of standard explanation-based learning, BAGGER generalization algorithm, and empirical analysis of explanation-based learning are also elaborated. This text likewise covers the effect of increased problem complexity, rule access strategies, empirical study of BAGGER2, and related work in similarity-based learning. This publication is suitable for readers interested in machine learning, especially explanation-based learning.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.