The Emphasis Year 2002-2003 Program on Nonlinear Partial Differential Equations and Related Analysis, September 2002-July 2003, Northwestern University, Evanston, Illinois
The Emphasis Year 2002-2003 Program on Nonlinear Partial Differential Equations and Related Analysis, September 2002-July 2003, Northwestern University, Evanston, Illinois
The Emphasis Year on Nonlinear Partial Differential Equations and Related Analysis at Northwestern University produced this fine collection of original research and survey articles. Many well-known mathematicians attended the events and submitted their contributions for this volume. Eighteen papers comprise this work, representing the most significant advances and current trends in nonlinear PDEs and their applications. Topics covered include elliptic and parabolic equations, NavierStokes equations, and hyperbolic conservation laws. Important applications are presented from incompressible and compressible fluid mechanics, combustion, and electromagnetism. Also included are articles on recent advances in statistical reliability in modeling, simulation, level set methods forimage processing, shock waves, free boundaries, boundary layers, errors in numerical solutions, stability, instability, and singular limits. The volume is suitable for researchers and graduate students interested in partial differential equations.
This book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.