Uniquely comprehensive and precise, this thoroughly updated sixth edition of the well-established and respected textbook is ideal for the complete study of the kinematics and dynamics of machines. With a strong emphasis on intuitive graphical methods, and accessible approaches to vector analysis, students are given all the essential background, notation, and nomenclature needed to understand the various independent technical approaches that exist in the field of mechanisms, kinematics, and dynamics, which are presented with clarity and coherence. This revised edition features updated coverage, and new worked examples alongside over 840 figures, over 620 end-of-chapter problems, and a solutions manual for instructors.
Biomedical Engineering Design presents the design processes and practices used in academic and industry medical device design projects. The first two chapters are an overview of the design process, project management and working on technical teams. Further chapters follow the general order of a design sequence in biomedical engineering, from problem identification to validation and verification testing. The first seven chapters, or parts of them, can be used for first-year and sophomore design classes. The next six chapters are primarily for upper-level students and include in-depth discussions of detailed design, testing, standards, regulatory requirements and ethics. The last two chapters summarize the various activities that industry engineers might be involved in to commercialize a medical device. - Covers subject matter rarely addressed in other BME design texts, such as packaging design, testing in living systems and sterilization methods - Provides instructive examples of how technical, marketing, regulatory, legal, and ethical requirements inform the design process - Includes numerous examples from both industry and academic design projects that highlight different ways to navigate the stages of design as well as document and communicate design decisions - Provides comprehensive coverage of the design process, including methods for identifying unmet needs, applying Design for 'X', and incorporating standards and design controls - Discusses topics that prepare students for careers in medical device design or other related medical fields
The seventh edition ofMechanical Engineering Designmarks a return to the basic approaches that have made this book the standard in machine design for over 40 years. At the same time it has been significantly updated and modernized for today's engineering students and professional engineers. Working from extensive market research and reviews of the 6th edition, the new 7th edition features reduced coverage of uncertainty and statistical methods. Statistics is now treated (in chapter 2) as one of several methods available to design engineers, and statistical applications are no longer integrated throughout the text, examples and problem sets. Other major changes include updated coverage of the design process, streamlined coverage of statistics, a more practical overview of materials and materials selection (moved to chapter 3),revised coverage of failure and fatigue, and review of basic strength of materials topics to make a clearer link with prerequisite courses. Overall coverage of basic concepts has been made more clear and concise, with some advanced topics deleted, so that readers can easily navigate key topics. Problem sets have been improved, with new problems added to help students progressively work through them. The book has an Online Learning Center with several powerful components: MATLAB for Machine Design (featuring highly visual MATLAB simulations and accompanying source code); the "FEPC" finite element program, with accompanying Finite Element Primer and FEM Tutorials; interactive FE Exam questions for Machine Design; and Machine Design Tutorials for study of key concepts from Parts I and II of the text. Complete Problem Solutions and PowerPoint slides of book illustrations are available for instructors, under password protection. A printed Instructor's Solutions Manual is also available, with detailed solutions to all chapter problems.
APPLIED STRENGTH OF MATERIALS 6/e, SI Units Version provides coverage of basic strength of materials for students in Engineering Technology (4-yr and 2-yr) and uses only SI units. Emphasizing applications, problem solving, design of structural members, mechanical devices and systems, the book has been updated to include coverage of the latest tools, trends, and techniques. Color graphics support visual learning, and illustrate concepts and applications. Numerous instructor resources are offered, including a Solutions Manual, PowerPoint slides, Figure Slides of book figures, and extra problems. With SI units used exclusively, this text is ideal for all Technology programs outside the USA.
This text is an established bestseller in engineering technology programs, and the Seventh Edition of Applied Strength of Materials continues to provide comprehensive coverage of the mechanics of materials. Focusing on active learning and consistently reinforcing key concepts, the book is designed to aid students in their first course on the strength of materials. Introducing the theoretical background of the subject, with a strong visual component, the book equips readers with problem-solving techniques. The updated Seventh Edition incorporates new technologies with a strong pedagogical approach. Emphasizing realistic engineering applications for the analysis and design of structural members, mechanical devices, and systems, the book includes such topics as torsional deformation, shearing stresses in beams, pressure vessels, and design properties of materials. A "big picture" overview is included at the beginning of each chapter, and step-by-step problem-solving approaches are used throughout the book. FEATURES Includes "the big picture" introductions that map out chapter coverage and provide a clear context for readers Contains everyday examples to provide context for students of all levels Offers examples from civil, mechanical, and other branches of engineering technology Integrates analysis and design approaches for strength of materials, backed up by real engineering examples Examines the latest tools, techniques, and examples in applied engineering mechanics This book will be of interest to students in the field of engineering technology and materials engineering as an accessible and understandable introduction to a complex field.
Designed for a first course in strength of materials, Applied Strength of Materials has long been the bestseller for Engineering Technology programs because of its comprehensive coverage, and its emphasis on sound fundamentals, applications, and problem-solving techniques. The combination of clear and consistent problem-solving techniques, numerous end-of-chapter problems, and the integration of both analysis and design approaches to strength of materials principles prepares students for subsequent courses and professional practice. The fully updated Sixth Edition. Built around an educational philosophy that stresses active learning, consistent reinforcement of key concepts, and a strong visual component, Applied Strength of Materials, Sixth Edition continues to offer the readers the most thorough and understandable approach to mechanics of materials.
Remarks by JVS. Volumes 1 and 2 of Feldspar Minerals were published in 1974, but Volume 3 was not completed because I was forced to devote 3 years to the resolution of unforeseen problems in the construction of an ion probe. By 1977, the incomplete draft for Volume 3 had become obsolete because of the enormous advances in knowledge of feldspars, particularly those in lunar rocks and meteorites, and in both deep-seated and ancient terrestrial rocks. Furthermore, it soon became obvious that a completely new version of Feldspar Minerals was needed because of the important new results on the physical and chemical properties. I had kept up with the interesting but tedious chore of weekly reading of the incoming literature and maintenance of the files. By 1980, the intense day-to day pressure had gone from my research programs on lunar rocks and on the development of the ion microprobe as a quantitative geochemical instrument, and I began preparation of a second edition of Feldspar Minerals.
Providing an analytical approach to selecting the best metal and obtaining optimal properties for and in a fabricated part, this text correlates weldability, formability and machinability with a metal's chemical composition through microstructures. It begins with a review of the principles of materials science and offers useful features, such as end-of-chapter problems and a solutions manual.
This book describes the mathematical foundations, especially geometric, underlying the motions and force-transfers in robots. The principles developed can be applied to both control of robots and the design of their major moving parts. Comprehensive coverage of the screw and its geometry bridges the gap between screw theory and traditional mechanics but no prior knowledge of screw theory is assumed. The reader is introduced to the screw with a simple planar example and progresses to robots that move three-dimensionally. Containing many illustrative examples, over 300 exercises, and a chapter list of references it is ideal for graduate students, researchers and professionals in the field of robotics, robot design and development.
The definitive machine design handbook for mechanical engineers, product designers, project engineers, design engineers, and manufacturing engineers covers every aspect of machine construction and operation. The 3rd edition of the Standard Handbook of Machine Design will be redesigned to meet the challenges of a new mechanical engineering age. In addition to adding chapters on structural plastics and adhesives, which are replacing the old nuts bolts and fasteners in design, the author will also update and streamline the remaining chapters.
This ninth edition continues to provide the focus and practicality that have made this book the standard in machine design for nearly 50 years. It combines the straightforward focus on fundamentals that especially targets the developing engineering student with an accuracy and completeness that makes this text a valued reference for practicing engineers. Key Features New to This Edition New and revised end-of-chapter problems. This edition includes over 1000 end-of-chapter problems, which is an increase of over 40%. There are over 600 new and revised problems Problems linked across multiple chapters. A series of multichapter linked problems is introduced to help students build on their knowledge and understand the connectivity of topics. Enhanced and updated coverage of numerous topics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.