This volume is a selection from the 281 published papers of Joseph Leonard Walsh, former US Naval Officer and professor at University of Maryland and Harvard University. The nine broad sections are ordered following the evolution of his work. Commentaries and discussions of subsequent development are appended to most of the sections. Also included is one of Walsh's most influential works, "A closed set of normal orthogonal function," which introduced what is now known as "Walsh Functions".
Richly textured and versatile text characterizes real numbers as a complete, ordered field. Rigorous development of the calculus, plus thorough treatment of basic topics of limits and inequalities. 1968 edition.
This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups continues with finite abelian groups (finitely generated groups are discussed later, in the context of module theory), Sylow theorems, simplicity of projective unimodular groups, free groups and presentations, and the Nielsen-Schreier theorem (subgroups of free groups are free). The study of commutative rings continues with prime and maximal ideals, unique factorization, noetherian rings, Zorn's lemma and applications, varieties, and Gr'obner bases. Next, noncommutative rings and modules are discussed, treating tensor product, projective, injective, and flat modules, categories, functors, and natural transformations, categorical constructions (including direct and inverse limits), and adjoint functors. Then follow group representations: Wedderburn-Artin theorems, character theory, theorems of Burnside and Frobenius, division rings, Brauer groups, and abelian categories. Advanced linear algebra treats canonical forms for matrices and the structure of modules over PIDs, followed by multilinear algebra. Homology is introduced, first for simplicial complexes, then as derived functors, with applications to Ext, Tor, and cohomology of groups, crossed products, and an introduction to algebraic K-theory. Finally, the author treats localization, Dedekind rings and algebraic number theory, and homological dimensions. The book ends with the proof that regular local rings have unique factorization."--Publisher's description.
This book stems from a unique and highly effective approach in introducing signal processing, instrumentation, diagnostics, filtering, control, and system integration.It presents the interactive industrial grade software testbed of mold oscillator that captures the mold motion distortion induced by coupling of the electro-hydraulic actuator nonlinearity with the resonance of the mold oscillator beam assembly. The testbed is then employed as a virtual lab to generate input-output data records that permit unraveling and refining complex behavior of the actual production system through merging dynamics, signal processing, instrumentation, and control into a coherent problem-solving package.The material is presented in a visually rich, mathematically and graphically well supported, but not analytically overburdened format. By incorporating software testbed into homework and project assignments, the book fully brings out the excitement of going through the adventure of exploring and solving a mold oscillator distortion problem, while covering the key signal processing, diagnostics, instrumentation, modeling, control, and system integration concepts.The approach presented in this book has been supported by two education advancement awards from the College of Engineering of the University of Illinois at Urbana-Champaign.
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
This book covers multivariable and vector calculus. It can be used as a textbook for a one-semester course or self-study. It includes worked-through exercises, with answers provided for many of the basic computational ones and hints for the more complex ones.. This second edition features new exercises, new sections on twist and binormal vectors for curves in space, linear approximations, and the Laplace and Poisson equations.
Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis – providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. It covers exponential function, and the development of trigonometric functions from the integral. The text is designed for a one-semester advanced calculus course for advanced undergraduates or graduate students. - Appropriate rigor for a one-semester advanced calculus course - Presents modern materials and nontraditional ways of stating and proving some results - Includes precise historical notes throughout the bookoutstanding feature is the collection of exercises in each chapter - Provides coverage of exponential function, and the development of trigonometric functions from the integral
Confusing Textbooks? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces. A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.
This volume contains three papers on the foundations of Grothendieck duality on Noetherian formal schemes and on not-necessarily-Noetherian ordinary schemes. The first paper presents a self-contained treatment for formal schemes which synthesizes several duality-related topics, such as local duality, formal duality, residue theorems, dualizing complexes, etc. Included is an exposition of properties of torsion sheaves and of limits of coherent sheaves. A second paper extends Greenlees-May duality to complexes on formal schemes. This theorem has important applications to Grothendieck duality. The third paper outlines methods for eliminating the Noetherian hypotheses. A basic role is played by Kiehl's theorem affirming conservation of pseudo-coherence of complexes under proper pseudo-coherent maps. This work gives a detailed introduction to the subject of Grothendieck Duality. The approach is unique in its presentation of a complex series of special cases that build up to the main results.
The book Sequences and Series in Calculus is designed as the first college/university calculus course for students who take and do well on the AP AB exam in high school and who are interested in a more proof-oriented treatment of calculus. The text begins with an ε-N treatment of sequence convergence, then builds on this to discuss convergence of series—first series of real numbers, then series of functions. The difference between uniform and pointwise convergence is discussed in some detail. This is followed by a discussion of calculus on power series and Taylor series. Finally improper integrals, integration by parts and partial fractions integration all are introduced. This book is designed both to teach calculus, and to give the readers and students a taste of analysis to help them determine if they wish to study this material even more deeply. It might be used by colleges and universities who teach special versions of calculus courses for their most mathematically advanced entering first-year students, as might its older sibling text Multivariable and Vector Calculus which appeared in 2020 and is intended for students who take and do well on the AP BC exam.
Praise for the first edition: Principles of Uncertainty is a profound and mesmerising book on the foundations and principles of subjectivist or behaviouristic Bayesian analysis. ... the book is a pleasure to read. And highly recommended for teaching as it can be used at many different levels. ... A must-read for sure!—Christian Robert, CHANCE It's a lovely book, one that I hope will be widely adopted as a course textbook. —Michael Jordan, University of California, Berkeley, USA Like the prize-winning first edition, Principles of Uncertainty, Second Edition is an accessible, comprehensive text on the theory of Bayesian Statistics written in an appealing, inviting style, and packed with interesting examples. It presents an introduction to the subjective Bayesian approach which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. This new edition has been updated throughout and features new material on Nonparametric Bayesian Methods, the Dirichlet distribution, a simple proof of the central limit theorem, and new problems. Key Features: First edition won the 2011 DeGroot Prize Well-written introduction to theory of Bayesian statistics Each of the introductory chapters begins by introducing one new concept or assumption Uses "just-in-time mathematics"—the introduction to mathematical ideas just before they are applied
Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.
The past two decades since the end of the Cold War have been years of remarkable change and transformation for Southeast Asia. Long seen as an arena for superpower rivalry, Southeast Asia is increasingly coming into its own by locating itself at the forefront of regional integration initiatives that involve not only the Association of Southeast Asian Nations, but major external powers such as the United States, China, India, Japan, and Australia as well. At the same time, the past two decades has seen the revival of old animosities as well as the emergence of new security challenges confronting the region. Old animosities include unresolved territorial disputes, while new challenges range from regional and global financial crises, terrorism, and pandemics. Significant changes within the ten Southeast Asian countries covered in this book have also transpired that have affected not only the complexion of domestic politics, but have also impacted regional diplomacy as well, such as the creation of potentially the eleventh "Southeast Asian" country – Timor Leste. Extensively updated and revised in light of these changes and developments, this fourth edition of Dictionary of the Modern Politics of Southeast Asia contains profiles of each Southeast Asian country. Following this, it provides more than 450 alphabetically arranged individual entries providing detailed accounts and analyses on major episodes and treaties, political parties and institutions, civil society movements, and regional and international organizations. Biographies of significant political leaders and personalities, both past and present, are also provided. Entries are comprehensively cross-referenced, and an index by country directs readers to all entries concerning a particular country. The Dictionary also includes an extensive bibliography that serves as a guide to further reading. It is an essential reference tool for all scholars and students of Asian politics and international affairs, and a vital resource for journalists, diplomats, policy-makers, and others with an interest in the region.
From the reviews: "Here is a momumental work by Doob, one of the masters, in which Part 1 develops the potential theory associated with Laplace's equation and the heat equation, and Part 2 develops those parts (martingales and Brownian motion) of stochastic process theory which are closely related to Part 1". --G.E.H. Reuter in Short Book Reviews (1985)
Numerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering.
An Introduction to Homological Algebra discusses the origins of algebraic topology. It also presents the study of homological algebra as a two-stage affair. First, one must learn the language of Ext and Tor and what it describes. Second, one must be able to compute these things, and often, this involves yet another language: spectral sequences. Homological algebra is an accessible subject to those who wish to learn it, and this book is the author's attempt to make it lovable. This book comprises 11 chapters, with an introductory chapter that focuses on line integrals and independence of path, categories and functors, tensor products, and singular homology. Succeeding chapters discuss Hom and ?; projectives, injectives, and flats; specific rings; extensions of groups; homology; Ext; Tor; son of specific rings; the return of cohomology of groups; and spectral sequences, such as bicomplexes, Kunneth Theorems, and Grothendieck Spectral Sequences. This book will be of interest to practitioners in the field of pure and applied mathematics.
This important collection of essays is a synthesis of foundational studies in Bayesian decision theory and statistics. An overarching topic of the collection is understanding how the norms for Bayesian decision making should apply in settings with more than one rational decision maker and then tracing out some of the consequences of this turn for Bayesian statistics. There are four principal themes to the collection: cooperative, non-sequential decisions; the representation and measurement of 'partially ordered' preferences; non-cooperative, sequential decisions; and pooling rules and Bayesian dynamics for sets of probabilities. The volume will be particularly valuable to philosophers concerned with decision theory, probability, and statistics, statisticians, mathematicians, and economists.
Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman’s book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.
The text covers a broad spectrum between basic and advanced complex variables on the one hand and between theoretical and applied or computational material on the other hand. With careful selection of the emphasis put on the various sections, examples, and exercises, the book can be used in a one- or two-semester course for undergraduate mathematics majors, a one-semester course for engineering or physics majors, or a one-semester course for first-year mathematics graduate students. It has been tested in all three settings at the University of Utah. The exposition is clear, concise, and lively. There is a clean and modern approach to Cauchy's theorems and Taylor series expansions, with rigorous proofs but no long and tedious arguments. This is followed by the rich harvest of easy consequences of the existence of power series expansions. Through the central portion of the text, there is a careful and extensive treatment of residue theory and its application to computation of integrals, conformal mapping and its applications to applied problems, analytic continuation, and the proofs of the Picard theorems. Chapter 8 covers material on infinite products and zeroes of entire functions. This leads to the final chapter which is devoted to the Riemann zeta function, the Riemann Hypothesis, and a proof of the Prime Number Theorem." -- Publisher.
There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. This text presents a series of essays on the topic.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.