This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.
A clear, efficient exposition of this topic with complete proofs and exercises, covering cubic and quartic formulas; fundamental theory of Galois theory; insolvability of the quintic; Galoiss Great Theorem; and computation of Galois groups of cubics and quartics. Suitable for first-year graduate students, either as a text for a course or for study outside the classroom, this new edition has been completely rewritten in an attempt to make proofs clearer by providing more details. It now begins with a short section on symmetry groups of polygons in the plane, for there is an analogy between polygons and their symmetry groups and polynomials and their Galois groups - an analogy which serves to help readers organise the various field theoretic definitions and constructions. The text is rounded off by appendices on group theory, ruler-compass constructions, and the early history of Galois Theory. The exposition has been redesigned so that the discussion of solvability by radicals now appears later and several new theorems not found in the first edition are included.
The Lexicon brings together lexical material from a wide range of published and non-published sources to create an extensive compilation of the vocabulary of Fulfulde as it is spoken in that part of central Mali known as Masina (in Fulfulde, Maasina). The Lexicon is intended primarily for non-Fulfulde speakers who are learning the language at the intermediate or advanced levels and who need access to a comprehensive reference source on Fulfulde vocabulary. Scholars, development workers, and others whose research or fieldwork involves use of the Fulfulde of Masina may find it helpful as well in clarifying nuances of meaning and standardized spelling for the less familiar terms they might encounter. It is also intended that the present work, beyond the matter of organizing vocabulary, will contribute significantly to the expanding lexicographical and linguistic investigations of Fulfulde.
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.
Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.