Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent circuit modeling, parameter identification, and state estimation in lithium-ion battery power applications. It explores the requirements of high-power lithium-ion batteries for new energy vehicles and systematically describes the key technologies in core state estimation based on battery equivalent modeling and parameter identification methods of lithium-ion batteries, providing a technical reference for the design and application of power lithium-ion battery management systems. Reviews Li-ion battery characteristics and applications. Covers battery equivalent modeling, including electrical circuit modeling and parameter identification theory Discusses battery state estimation methods, including state of charge estimation, state of energy prediction, state of power evaluation, state of health estimation, and cycle life estimation Introduces equivalent modeling and state estimation algorithms that can be applied to new energy measurement and control in large-scale energy storage Includes a large number of examples and case studies This book has been developed as a reference for researchers and advanced students in energy and electrical engineering.
To deal with environmental deterioration and energy crises, developing clean and sustainable energy resources has become the strategic goal of the majority of countries in the global community. Lithium-ion batteries are the modes of power and energy storage in the new energy industry, and are also the main power source of new energy vehicles. State-of-charge (SOC) and state-of-health (SOH) are important indicators to measure whether a battery management system (BMS) is safe and effective. Therefore, this book focuses on the co-estimation strategies of SOC and SOH for power lithium-ion batteries. The book describes the key technologies of lithium-ion batteries in SOC and SOH monitoring and proposes a collaborative optimization estimation strategy based on neural networks (NN), which provide technical references for the design and application of a lithium-ion battery power management system. The theoretical methods in this book will be of interest to scholars and engineers engaged in the field of battery management system research.
State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel. - Introduces lithium-ion batteries, characteristics and core state parameters - Examines battery equivalent modeling and provides advanced methods for battery state estimation - Analyzes current technology and future opportunities
Awareness of the safety issues of lithium-ion batteries is crucial in the development of new energy technologies, and real-time and high-precision State of Energy (SOE) estimation is not only a prerequisite for battery safety, but also serves as the basis for predicting the remaining driving range of electric vehicles and aircrafts. In order to achieve real-time and accurate estimation of the energy state of lithium-ion batteries, this book improves the calculation method of the open-circuit voltage in the traditional second-order RC equivalent circuit model. It also combines a fuzzy controller and a dual-weighted multi-innovation algorithm to optimize the traditional Centralized Kalman Filter (CKF) algorithm in terms of the aspects of convergence speed, estimation accuracy, and algorithm robustness. This enables the precise estimation of SOE and the maximum available energy. The content of this book provides theoretical support for the development of new energy initiatives.
This book aims to evaluate and improve the state of charge (SOC) and state of health (SOH) of automotive lithium-ion batteries. The authors first introduce the basic working principle and dynamic test characteristics of lithium-ion batteries. They present the dynamic transfer model, compare it with the traditional second-order reserve capacity (RC) model, and demonstrate the advantages of the proposed new model. In addition, they propose the chaotic firefly optimization algorithm and demonstrate its effectiveness in improving the accuracy of SOC and SOH estimation through theoretical and experimental analysis. The book will benefit researchers and engineers in the new energy industry and provide students of science and engineering with some innovative aspects of battery modeling.
A microgrid (MG) is a local energy system consisting of a number of energy sources, energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs include wind, solar or other renewable energy sources. MGs provide flexibility, reduce the main electricity grid dependence and contribute to change the large centralized production paradigm to local and distributed generation. However, such energy systems require complex management, advanced control and optimization. Interest on MGs hierarchical control has increased due to the availability of cheap online measurements. Similarly to any process system, MG hierarchical control is divided into three levels. However, an additional control algorithm is required to manage power transmission between sources and loads, maximizing efficiency and minimizing transmission losses. This real-time optimization problem is addressed to locally readjust converters operation to attain global efficiency. An algorithm is presented by formulating and solving the power sharing optimization problem in a two-level approach. The objective function is the sum of the apparent power transferred, whose minimization reduces total power losses and energy costs. The performance of the approach proposed is validated on a simulated case study. Different scenarios are tested and the performance of the algorithm is compared and discussed. The power losses reduction obtained with the proposed approach are compared with those obtained by standard procedures (Equal Power Sharing - EPS), showing enhanced performance.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.