This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics including equations and systems of elliptic and parabolic type and various applications in physics, mechanics and engineering. These topics are now part of various areas of science and have experienced tremendous development during the last decades. -------------------------------------
We study the unconstrained (free) motion of an elastic solid B in a Navier-Stokes liquid L occupying the whole space outside B, under the assumption that a constant body force b is acting on B. More specifically, we are interested in the steady motion of the coupled system {B,L}, which means that there exists a frame with respect to which the relevant governing equations possess a time-independent solution. We prove the existence of such a frame, provided some smallness restrictions are imposed on the physical parameters, and the reference configuration of B satisfies suitable geometric properties.
This research presents some important domains of partial differential equations and applied mathematics including calculus of variations, control theory, modelling, numerical analysis and various applications in physics, mechanics and engineering. These topics are now part of many areas of science and have experienced tremendous development during the last decades.
This book provides an overview of the state of the art in important subjects, including ? besides elliptic and parabolic issues ? geometry, free boundary problems, fluid mechanics, evolution problems in general, calculus of variations, homogenization, control, modeling and numerical analysis.
This volume presents a series of lectures given at the Winter School in Fluid Dynamics held in Paseky, Czech Republic in December 1993. Including original research and important new results, it contains a detailed investigation of some methods used towards the proof of global regularity for the Navier-Stokes equations. It also explores new formulations of the free-boundary in the dynamics of viscous fluids, and different methods for conservation laws in several space dimensions and related numerical schemes. The final contribution examines the existence and stability of non-isothermal compressible fluids and their relation with incompressible models.
This volume consists of four contributions that are based on a series of lectures delivered by Jens Frehse. Konstantin Pikeckas, K.R. Rajagopal and Wolf von Wahl t the Fourth Winter School in Mathematical Theory in Fluid Mechanics, held in Paseky, Czech Republic, from December 3-9, 1995. In these papers the authors present the latest research and updated surveys of relevant topics in the various areas of theoretical fluid mechanics. Specifically, Frehse and Ruzicka study the question of the existence of a regular solution to Navier-Stokes equations in five dimensions by means of weighted estimates. Pileckas surveys recent results regarding the solvability of the Stokes and Navier-Stokes system in domains with outlets at infinity. K.R. Rajagopal presents an introduction to a continuum approach to mixture theory with the emphasis on the constitutive equation, boundary conditions and moving singular surface. Finally, Kaiser and von Wahl bring new results on stability of basic flow for the Taylor-Couette problem in the small-gap limit. This volume would be indicated for those in the fields of applied mathematicians, researchers in fluid mechanics and theoretical mechanics, and mechanical engineers.
This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics including equations and systems of elliptic and parabolic type and various applications in physics, mechanics and engineering. These topics are now part of various areas of science and have experienced tremendous development during the last decades. -------------------------------------
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.