This book provides an introduction to image processing, an overview of the transforms which are most widely used in the field of image processing, and an introduction to the application of multiscale transforms in image processing. The book is divided into three parts, with the first part offering the reader a basic introduction to image processing. The second part of the book starts with a chapter on Fourier analysis and Fourier transforms, wavelet analysis, and ends with a chapter on new multiscale transforms. The final part of the book deals with all of the most important applications of multiscale transforms in image processing. The chapters consist of both tutorial and highly advanced material, and as such the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications. The technique of solving problems in the transform domain is common in applied mathematics and widely used in research and industry, but is a somewhat neglected subject within the undergraduate curriculum. It is hoped that faculty can use this book to create a course that can be offered early in the curriculum and fill this void. Also, the book is intended to be used as a reference manual for scientists who are engaged in image processing research, developers of image processing hardware and software systems, and practising engineers and scientists who use image processing as a tool in their applications.
This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.
This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.
This book provides an introduction to image processing, an overview of the transforms which are most widely used in the field of image processing, and an introduction to the application of multiscale transforms in image processing. The book is divided into three parts, with the first part offering the reader a basic introduction to image processing. The second part of the book starts with a chapter on Fourier analysis and Fourier transforms, wavelet analysis, and ends with a chapter on new multiscale transforms. The final part of the book deals with all of the most important applications of multiscale transforms in image processing. The chapters consist of both tutorial and highly advanced material, and as such the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications. The technique of solving problems in the transform domain is common in applied mathematics and widely used in research and industry, but is a somewhat neglected subject within the undergraduate curriculum. It is hoped that faculty can use this book to create a course that can be offered early in the curriculum and fill this void. Also, the book is intended to be used as a reference manual for scientists who are engaged in image processing research, developers of image processing hardware and software systems, and practising engineers and scientists who use image processing as a tool in their applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.