Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.
In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic programming may be more powerful than neural networks and other machine learning techniques, able to solve problems in a wider range of disciplines. In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic Programming contains a great many worked examples and includes a sample computer code that will allow readers to run their own programs.In getting computers to solve problems without being explicitly programmed, Koza stresses two points: that seemingly different problems from a variety of fields can be reformulated as problems of program induction, and that the recently developed genetic programming paradigm provides a way to search the space of possible computer programs for a highly fit individual computer program to solve the problems of program induction. Good programs are found by evolving them in a computer against a fitness measure instead of by sitting down and writing them.
In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic programming may be more powerful than neural networks and other machine learning techniques, able to solve problems in a wider range of disciplines. In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic Programming contains a great many worked examples and includes a sample computer code that will allow readers to run their own programs.In getting computers to solve problems without being explicitly programmed, Koza stresses two points: that seemingly different problems from a variety of fields can be reformulated as problems of program induction, and that the recently developed genetic programming paradigm provides a way to search the space of possible computer programs for a highly fit individual computer program to solve the problems of program induction. Good programs are found by evolving them in a computer against a fitness measure instead of by sitting down and writing them.
Background on genetic algorithms, LISP, and genetic programming. Hierarchical problem-solving. Introduction to automatically defined functions: the two-boxes problem. Problems that straddle the breakeven point for computational effort. Boolean parity functions. Determining the architecture of the program. The lawnmower problem. The bumblebee problem. The increasing benefits of ADFs as problems are scaled up. Finding an impulse response function. Artificial ant on the San Mateo trail. Obstacle-avoiding robot. The minesweeper problem. Automatic discovery of detectors for letter recognition. Flushes and four-of-a-kinds in a pinochle deck. Introduction to biochemistry and molecular biology. Prediction of transmembrane domains in proteins. Prediction of omega loops in proteins. Lookahead version of the transmembrane problem. Evolutionary selection of the architecture of the program. Evolution of primitives and sufficiency. Evolutionary selection of terminals. Evolution of closure. Simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure. The role representation and the Lens effect. Default parameters. Computer implementation. Electronic mailing list and public repository.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.