The text Modern Electrochemistry (authored by J. O'M. Bockris and A. K. N. Reddy and published by Plenum Press in 1970) was written between 1967 and 1969. The concept for it arose in 1962 in the Energy Conversion Center at the University of Pennsylvania, and it was intended to act as a base for interdisciplinary students and mature scientists~hemists, physicists, biologists, metallurgists, and engineers-who wanted to know about electrochemical energy conversion and storage. In writing the book, the stress, therefore, was placed above all on lucidity in teaching physical electrochemistry from the beginning. Although this fundamentally undergraduate text continues to find purchasers 20 years after its birth, it has long been clear that a modernized edition should be written, and the plans to do so were the origin of the present book. However, if a new Bockris and Reddy was to be prepared and include the advances of the last 20 years, with the same degree of lucidity as characterized the first one, the depth of the development would have to be well short of that needed by professional electrochemists.
The origin of this book lies in a time before one of the authors (J. O'M. B.) left the University of Pennsylvania bound for the Flinders University. His collaboration with Dennis Matthews at the University of Pennsylvania had contributed a singular experimental datum to the quantum theory of elec trode processes: the variation of the separation factor with potential, which could only be interpreted in terms of a quantum theory of electrode kinetics. The authors came together as a result of grad~ate work of one of them (S. U. M. K.) on the quantum mechanics and photo aspects of elec trode processes, and this book was written during a postdoctoral fellowship held by him at the Flinders University. Having stated the book's origin, it is worthwhile stating the rational izations the authors had for writing it. Historically, quantization in elec trochemistry began very early (1931) in the applications of the quantum theory to chemistry. (See the historical table on pages xviii-xix.) There was thereafter a cessation of work on the quantum theory in electrochemistry until a continuum dielectric viewpoint, based on Born's equation for solvation energy, began to be developed in the 1950s and snowballed during the 1960s.
This book had its nucleus in some lectures given by one of us (J. O’M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.
This book had its nucleus in some lectures given by one of us (J. O’M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.
In this book, the objective has been to set down a number of questions, largely numerical problems, to help the student of electrochemical science. No collection of problems in electrochemistry has previously been published. The challenge which faces the authors of such a book is the breadth of the material in modern electrochemistry, and the diversity of backgrounds and needs of people who may find a "problems book" in electrochemistry to be of use. The general intention for Chapters 2-11 has been to give the first ten questions at a level which can be dealt with by students who are undergoing instruction in the science of electrochemistry, but have not yet reached graduate standard in it. The last two questions in Chapters 2-11 have been chosen at a more advanced standard, corre sponding to that expected of someone with knowledge at the level of a Ph.D. degree in electrochemistry.
This book had its nucleus in some lectures given by one of us (J. O’M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.
This book had its nucleus in some lectures given by one of us (J. O’M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.
This long awaited and thoroughly updated version of the classic text (Plenum Press, 1970) explains the subject of electrochemistry in clear, straightforward language for undergraduates and mature scientists who want to understand solutions. Like its predecessor, the new text presents the electrochemistry of solutions at the molecular level. The Second Edition takes full advantage of the advances in microscopy, computing power, and industrial applications in the quarter century since the publication of the First Edition. Such new techniques include scanning-tunneling microscopy, which enables us to see atoms on electrodes; and new computers capable of molecular dynamics calculations that are used in arriving at experimental values. Chapter 10 starts with a detailed description of what happens when light strikes semi-conductor electrodes and splits water, thus providing in hydrogen a clean fuel. There have of course been revolutionary advances here since the First Edition was written. The book also discusses electrochemical methods that may provide the most economical path to many new syntheses - for example, the synthesis of the textile, nylon. The broad area of the breakdown of material in moist air, and its electrochemistry is taken up in the substantial Chapter 12. Another exciting topic covered is the evolution of energy conversion and storage which lie at the cutting edge of clean automobile development. Chapter 14 presents from a fresh perspective a discussion of electrochemical mechanisms in Biology, and Chapter 15 shows how new electrochemical approaches may potentially alleviate many environmental problems.
7 The Electrified Interface.- 7.1 Electrification of an Interface.- 7.1.1 The Electrode-Electrolyte Interface: The Basis of Electrodics.- 7.1.2 New Forces at the Boundary of an Electrolyte.- 7.1.3 The Interphase Region Has New Properties and New Structures.- 7.1.4 An Electrode Is Like a Giant Central Ion.- 7.1.5 The Consequences of Compromise Arrangements: The Electrolyte Side of the Boundary Acquires a Charge.- 7.1.6 Both Sides of the Interface Become Electrified: The So-Called "Electrical Double Layer"--7.1.7 Double Layers Are Characteristic of All Phase Boundaries.- 7.1.8 A Look into an El.
The text Modern Electrochemistry (authored by J. O'M. Bockris and A. K. N. Reddy and published by Plenum Press in 1970) was written between 1967 and 1969. The concept for it arose in 1962 in the Energy Conversion Center at the University of Pennsylvania, and it was intended to act as a base for interdisciplinary students and mature scientists~hemists, physicists, biologists, metallurgists, and engineers-who wanted to know about electrochemical energy conversion and storage. In writing the book, the stress, therefore, was placed above all on lucidity in teaching physical electrochemistry from the beginning. Although this fundamentally undergraduate text continues to find purchasers 20 years after its birth, it has long been clear that a modernized edition should be written, and the plans to do so were the origin of the present book. However, if a new Bockris and Reddy was to be prepared and include the advances of the last 20 years, with the same degree of lucidity as characterized the first one, the depth of the development would have to be well short of that needed by professional electrochemists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.