An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
Important lectures on differential topology by acclaimed mathematician John Milnor These are notes from lectures that John Milnor delivered as a seminar on differential topology in 1963 at Princeton University. These lectures give a new proof of the h-cobordism theorem that is different from the original proof presented by Stephen Smale. Milnor's goal was to provide a fully rigorous proof in terms of Morse functions. This book remains an important resource in the application of Morse theory.
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
What should your life be about? What are the things that matter? In this thoughtful and poignant collection of stories and essays, John P. Weiss inspires readers with life lessons about hope, love, loss, creative passion, self-improvement, relationships, and getting the most out of life. A full-time writer and artist, Weiss is a former police chief with nearly three decades of law enforcement experience. He holds a master's degree in criminal justice administration, and over 51K subscribe to his popular weekly online essays.
The theory of infinite loop spaces has been the center of much recent activity in algebraic topology. Frank Adams surveys this extensive work for researchers and students. Among the major topics covered are generalized cohomology theories and spectra; infinite-loop space machines in the sense of Boadman-Vogt, May, and Segal; localization and group completion; the transfer; the Adams conjecture and several proofs of it; and the recent theories of Adams and Priddy and of Madsen, Snaith, and Tornehave.
This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles.
The book develops the theory of secondary cohomology operations for singular cohomology theory. The author develops the subject in terms of elementary constructions from general homotopy theory. Among many applications considered are the Hopf invariant one theorem (for all primes $p$, including $p = 2$), Browder's theorem on higher Bockstein operations, and cohomology theory of Massey-Peterson fibrations. Numerous examples and exercises help readers to gain a working knowledge of the theory. A summary of more advanced parts of the core material is included in the first chapter. Prerequisite is basic algebraic topology, including the Steenrod operations. The book is written for graduate students and research mathematicians interested in algebraic topology and can be used for self-study or as a textbook for an advanced course on the topic.
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topological methods and also for geometers who are faced with problems requiring topological approaches and thus need a simple and concrete introduction to rational homotopy. This is essentially a book of applications. Geodesics, curvature, embeddings of manifolds, blow-ups, complex and Kähler manifolds, symplectic geometry, torus actions, configurations and arrangements are all covered. The chapters related to these subjects act as an introduction to the topic, a survey, and a guide to the literature. But no matter what the particular subject is, the central theme of the book persists; namely, there is a beautiful connection between geometry and rational homotopy which both serves to solve geometric problems and spur the development of topological methods.
After yet another decade of leaming, experimenting, and inves tigating since my first book, Arterial System Dynamics, the many new medical breakthroughs and technological advances have inspired me to write this book to bridge the gap between basic research and clinical applications. The application of physical principles and quantitative approaches to the understanding of the arterial circulation and its interactions with the heart in normal and diseased conditions form the basis of The Arterial Circulation. Knowledge of the physiology and rheology of arteries, as well as all of their structural-functional corre lates, is a necessary prerequisite to the proper hemodynamic interpretatiqn of pressure-flow relations and the pulsatile transmis sion characteristics in different arteries. The natural coupling and interactions of the heart, the coronary circulation, and the arterial system necessitate analysis of alterations to global functioning. Modeling provides a tool for isolating and predicting parameter changes and is employed throughout the book. Experimental data are provided for model validations, and also for more realistic interpretations. Techniques and new methods for clinical hemo dynamic measurement and diagnosis are included to help the reader un derstand the physical principles underlying such abnormal cardiovascular functions as hypertension, stenosis, and myocardial ischemia. The progressive changes in vascular properties during aging are also discussed. Modem approaches utilizing computer mode ling and allomery are presented with selected examples, such as combined hypertension and aortic valve stenosis, and ventricular hypertrophy.
The connective topological modular forms spectrum, tmf, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of tmf and several tmf-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The H∞ ring structure of the sphere and of tmf are used to determine many differentials and relations.
This monograph gives framed link pictures of the Kummer surface (= [italic]V4) and some Dolgachev surfaces. The emphasis here is to use the elliptic pencil structure to describe the framed links. This approach is particularly convenient to see the change of handlebody structures of elliptic surfaces after an operation of logarithmic transform, which is an important ingredient in constructing Dolgachev surfaces.
Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.