Since at least the time of Poisson, mathematicians have pondered the notion of recurrence for differential equations. Solutions that exhibit recurrent behavior provide insight into the behavior of general solutions. In Recurrence and Topology, Alongi and Nelson provide a modern understanding of the subject, using the language and tools of dynamical systems and topology. Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points.
Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
I have learned a lot from John Neu over the past years, and his book reflects very well his sense of style and purpose. --Walter Craig, McMaster University, Hamilton, Ontario, Canada and Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada John Neu's book presents the basic ideas of fluid mechanics, and of the transport of matter, in a clear and reader-friendly way. Then it proposes a collection of problems, starting with easy ones and gradually leading up to harder ones. Each problem is solved with all the steps explained. In the course of solving these problems, many fundamental methods of analysis are introduced and explained. This is an ideal book for use as a text, or for individual study. --Joseph B. Keller, Stanford University This book presents elementary models of transport in continuous media and a corresponding body of mathematical technique. Physical topics include convection and diffusion as the simplest models of transport; local conservation laws with sources as the general framework of continuum mechanics; ideal fluid as the simplest model of a medium with mass; momentum and energy transport; and finally, free surface waves, in particular, shallow water theory. There is a strong emphasis on dimensional analysis and scaling. Some topics, such as physical similarity and similarity solutions, are traditional. In addition, there are reductions based on scaling, such as incompressible flow as a limit of compressible flow, and shallow water theory derived asymptotically from the full equations of free surface waves. More and deeper examples are presented as problems, including a series of problems that model a tsunami approaching the shore. The problems form an embedded subtext to the book. Each problem is followed by a detailed solution emphasizing process and craftsmanship. The problems express the practice of applied mathematics as the examination and re-examination of simple but essential ideas in many interrelated examples.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.