Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB® codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.
The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems. The book contains background material from filtering, turbulence theory and numerical analysis, making it suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required.
Many Indonesian landscape artists in the early part of the twentieth century were clearly influenced by the somewhat romantic style landscape paintings of expatriate Europeans and Japanese living in Indonesia. However, there were also a number of indigenous and Indo- European realist landscape painters who, from the early to mid-twentieth century, developed a style commonly referred to as Mooi Indie. This book has its genesis in trips to England and southern Europe taken in the 1970s where the author experienced, and was attracted to, the beauty and technical skills of eighteenth- to mid-nineteenth century naturalist English landscape school painters and the derivative French Barbizon plein – air school. Although influenced by the above schools, Mooi Indie painters had their own unique subject matter, perspective, brush strokes and palette which make their work instantly recognizable and eminently worthy of respect. The largest concentration of Mooi Indie painters was in Bandung, West Java. Apart from Basuki Abdullah, Mas Pirngadie, Suriosubroto and Sukardji, most of their work is little known. One family living at Bandung included three superb Mooi Indie painters of which Basar Idjonati was the most distinguished.
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB® codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.
The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems. The book contains background material from filtering, turbulence theory and numerical analysis, making it suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required.
Many natural phenomena ranging from climate through to biology are described by complex dynamical systems. Getting information about these phenomena involves filtering noisy data and prediction based on incomplete information (complicated by the sheer number of parameters involved), and often we need to do this in real time, for example for weather forecasting or pollution control. All this is further complicated by the sheer number of parameters involved leading to further problems associated with the 'curse of dimensionality' and the 'curse of small ensemble size'. The authors develop, for the first time in book form, a systematic perspective on all these issues from the standpoint of applied mathematics. The book contains enough background material from filtering, turbulence theory and numerical analysis to make the presentation self-contained and suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required to enlighten observations and models.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.