Seznam literature o paleogenskih velikih foraminiferah, ki ga je v glavnem sestavil Johannes S. Pignatti, je zelo izčrpen seznam referenc o stratigrafiji, paleoekologiji, morfologiji in taksonomiji paleogenskih velikih foraminifer. Tovrstna literatura seže prav na začetek geološke znanosti in je mnogokrat raztresena v težko dostopnih in manj znanih publikacijah. Sedaj je ta velika količina podatkov, ki bi sicer ostali znani samo redkim specialistom, postala dostopna širši javnosti. Predstavlja nepogrešljivo orodje za vsakogar, ki se ukvarja s katerimkoli področjem geologije in paleontologije paleogena. Kamnine s paleogenskimi velikimi foraminiferami tvorijo marsikje pomembne kolektorje za nafto ali pa so v njih nahajališča drugih gospodarsko pomembnih surovin. Pričujoči seznam bo tako dobrodošel ne le akademskim raziskovalcem, temveč tudi tistim, ki se v praksi ukvarjajo z izkoriščanjem naravnih bogastev.
This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH
Several novel diagnostic systems based on the detection of coherent THz radiation are presented. The investigation of the photon beam properties allow for bunch-by-bunch and turn-by-turn diagnostics of the emitting electron bunches in the accelerator. It is used for time-resolved studies of the micro-bunching instability. Accompanying simulations with Inovesa show a good agreement with the measurement which enhances the knowledge of the physics behind the micro-bunching instability.
From the reviews: " A unique and fascinating blend, which is shown to be useful for a variety of applications, including robotics, geometrical optics, computer animation, and geometric design. The contents of the book are visualized by a wealth of carefully chosen illustrations, making the book a shear pleasure to read, or even to just browse in." Mathematical Reviews
In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.
Quantum algorithms are among the most important, interesting, and promising innovations in information and communication technology. They pose a major threat to today's cybersecurity and at the same time promise great benefits by potentially solving previously intractable computational problems with reasonable effort. The theory of quantum algorithms is based on advanced concepts from computer science, mathematics, and physics. Introduction to Quantum Algorithms offers a mathematically precise exploration of these concepts, accessible to those with a basic mathematical university education, while also catering to more experienced readers. This comprehensive book is suitable for self-study or as a textbook for one- or two-semester introductory courses on quantum computing algorithms. Instructors can tailor their approach to emphasize theoretical understanding and proofs or practical applications of quantum algorithms, depending on the course's goals and timeframe.
Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.
This attractive textbook with its easy-to-follow presentation provides a down-to-earth introduction to operations research for students in a wide range of fields such as engineering, business analytics, mathematics and statistics, computer science, and econometrics. It is the result of many years of teaching and collective feedback from students.The book covers the basic models in both deterministic and stochastic operations research and is a springboard to more specialized texts, either practical or theoretical. The emphasis is on useful models and interpreting the solutions in the context of concrete applications.The text is divided into several parts. The first three chapters deal exclusively with deterministic models, including linear programming with sensitivity analysis, integer programming and heuristics, and network analysis. The next three chapters primarily cover basic stochastic models and techniques, including decision trees, dynamic programming, optimal stopping, production planning, and inventory control. The final five chapters contain more advanced material, such as discrete-time and continuous-time Markov chains, Markov decision processes, queueing models, and discrete-event simulation.Each chapter contains numerous exercises, and a large selection of exercises includes solutions.
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.
In this Ph.D. thesis a system of coupled fluidized bed reactors is modelled and simulated dynamically. Chemical Looping Combustion was used as an exemplary process in both the numerical and the experimental part of this work. For the simulation purpose a novel flowsheeting software was used and models for the needed process units developed and integrated into this software. The needed unit models were three interconnected fluidized bed reactors in circulating and bubbling operation conditions, a cyclone for gas-solid separation and loop seals, which ensured solids transport and gas separation between the reactors. Additionally, lab scale experiments on the reactivity of the used solids, oxygen carrier and solid fuels, were conducted and kinetic parameters extracted. All unit models were connected to a process flowsheet and simulated dynamically. The simulation results were compared to experimental data from a 25 kWth pilot plant operated at the university by the author. It could be shown that a detailed and dynamic simulation of the whole process can be carried out over a time period of more than 45 minutes and the experimental results from start-up, steady state operation and shutdown of the plant were predicted accurately.
Laminate and sandwich structures are typical lightweight elements with rapidly ex panding application in various industrial fields. In the past, these structures were used primarily in aircraft and aerospace industries. Now, they have also found ap plication in civil and mechanical engineering, in the automotive industry, in ship building, the sport goods industries, etc. The advantages that these materials have over traditional materials like metals and their alloys are the relatively high specific strength properties (the ratio strength to density, etc). In addition, the laminate and sandwich structures provide good vibration and noise protection, thermal insulation, etc. There are also disadvantages - for example, composite laminates are brittle, and thejoining of such elements is not as easy as with classical materials. The recycling of these materials is also problematic, and a viable solution is yet to be developed. Since the application of laminates and sandwiches has been used mostly in new technologies, governmental and independent research organizations, as well as big companies, have spent a lot of money for research. This includes the development of new materials by material scientists, new design concepts by mechanical and civil engineers as well as new testing procedures and standards. The growing de mands of the industry for specially educated research and practicing engineers and material scientists have resulted in changes in curricula of the diploma and master courses. More and more universities have included special courses on laminates and sandwiches, and training programs have been arranged for postgraduate studies.
The current volume presents four chapters touching on some of the most important and modern areas of research in Mathematical Finance: asset price bubbles (by Philip Protter); energy markets (by Fred Espen Benth); investment under transaction costs (by Paolo Guasoni and Johannes Muhle-Karbe); and numerical methods for solving stochastic equations (by Dan Crisan, K. Manolarakis and C. Nee).The Paris-Princeton Lecture Notes on Mathematical Finance, of which this is the fifth volume, publish cutting-edge research in self-contained, expository articles from renowned specialists. The aim is to produce a series of articles that can serve as an introductory reference source for research in the field.
This book provides an overview of the main approaches used to analyze the dynamics of cellular automata. Cellular automata are an indispensable tool in mathematical modeling. In contrast to classical modeling approaches like partial differential equations, cellular automata are relatively easy to simulate but difficult to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction to cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of various topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification)? These classifications suggest that cellular automata be clustered, similar to the classification of partial differential equations into hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question of whether the properties of cellular automata are decidable. Surjectivity and injectivity are examined, and the seminal Garden of Eden theorems are discussed. In turn, the third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows us to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for the Turing pattern, and Greenberg-Hastings automata for excitable media. In addition, models for sand piles, the dynamics of infectious d
This edition of the Life of Adam and Eve in Greek, with a full critical apparatus, provides a reliable reconstruction of the earliest attainable stage of the writing, but also gives a transparent account of its subsequent textual development during the Middle Ages.
Oxygen exists in two gaseous (dioxygen and ozone) and six solid allotropic modifications. An additional allotropic modification of oxygen, the cyclooctaoxygen, was predicted to exist in 1990. The first synthesis and characterization of cyclooctaoxygen as its sodium crown complex, isolated in the form of three cytosine nucleoside hydrochloride complexes, was reported in 2016. Cyclooctaoxygen sodium was synthesized in vitro from atmospheric oxygen, or catalase effect-generated oxygen, under catalysis of cytosine nucleosides and either ninhydrin or eukaryotic low-molecular weight RNA. Thin-layer chromatographic mobility shift assays were applied on specific nucleic acids and the cyclooctaoxygen sodium complex. The cationic cyclooctaoxygen sodium complex was shown to bind to nucleic acids (RNA and DNA), to associate with single-stranded DNA and spermine phosphate, and to be essentially non-toxic to cultured mammalian cells at 0.1–1.0 mM concentration. It is postulated that cyclooctaoxygen is formed in most eukaryotic cells in vivo from dihydrogen peroxide in a catalase reaction catalysed by cytidine and RNA. A molecular biological model was deduced for a first epigenetic shell of eukaryotic in vivo DNA. This model incorporates an epigenetic explanation for the interactions of the essential micronutrient selenium (as selenite) with eukaryotic in vivo DNA. The sperminium hydrogen phosphate/cyclooctaoxygen sodium complex is calculated to cover the actively transcribed regions (2.6%) of bovine lymphocyte interphase genome. Cyclooctaoxygen seems to be naturally absent in hypoxia-induced highly condensed chromatin, taken as a model for eukaryotic metaphase/anaphase/early telophase mitotic chromatin. Hence, it is proposed that the cyclooctaoxygen sodium-bridged sperminium hydrogen phosphate and selenite coverage serves as an epigenetic shell of actively transcribed gene regions in eukaryotic 'open' euchromatin DNA. It is proposed that the sperminium phosphate/cyclooctaoxygen sodium complex coverage of nucleic acids is essential to eukaryotic gene regulation and promoted proto-eukaryotic evolution. Cyclooctaoxygen sodium-bridged sperminium hydrogen selenite is calculated to serve as a marker shell component at ATG start codons in human euchromatin DNA mRNA genes, both at the translation initiation triplet and at 5′-untranslated region upstream ATGs. The total herbicide glyphosate (ROUNDUP®) and its metabolite (aminomethyl)phosphonic acid (AMPA) are proved to represent 'epigenetic poisons', since they both selectively destroy the cyclooctaoxygen sodium complex. This definition is of reason, since the destruction of cyclooctaoxygen is certainly sufficient to bring the protection shield of human euchromatin into collateral epigenetic collapse. The total herbicide glyphosate and its environmental metabolite (aminomethyl)phosphonic acid (AMPA) can be associated in vitro with catalytic detoriation of eukaryotic euchromatin genetic information. The epigenetic shell of eukaryotic euchromatin is susceptible to decay induced by catalytic epigenetic poisons threatening eukaryotic genomic heritage.
‘Digital competition’, a term and concept that has risen to the forefront of competition law, may be viewed as both promising and cautionary: on the one hand, it brings the promises of increased speed, efficiency and objectivity, and, on the other, it entails potential pitfalls such as hard-to-identify pathways to unfair pricing, dominant positions and their potential abuse, restriction of choice and abuse of personal data. Accordingly, jurisdictions around the world are taking measures to deal with the phenomenon. In this concise but thoroughly researched book – both informative and practical – lawyers from a prominent firm with a specialised digital competition team take stock and examine the state of digital competition in the enforcement practices of six competition authorities in Europe, most of these forerunners in the field of digital competition policy and enforcement. The competition authorities surveyed are those of the European Union, the United Kingdom, France, Germany, the Netherlands and Belgium. For each, an overview, spanning the period from 2012 to mid-2019, includes not only landmark cases in which digital technologies have had a significant impact on the competition law outcome but also guidance documents such as speeches, policy statements, industry surveys and research reports. Activities and enforcement practices of the various authorities include the following and more: degree of activity; focus of the activity; enforcement styles; enforcement instruments; visible effectiveness of enforcement; and important insights and outlooks. Each overview contains separate chapters on the cartel prohibition, the prohibition of abuse of a dominant position and merger control. An additional chapter evaluates the similarities and differences in the enforcement practices and the positive and negative effects of digital competition in the jurisdictions investigated, and a concluding chapter offers recommendations. An indispensable guide to quickly and accessibly acquiring in-depth knowledge in competition law in the digital sector, this matchless volume is a must-read for any practitioner or academic who encounters competition law related to digital markets. The dilemmas and challenges of the new competition law reality – which is here already, like it or not – are clearly explained here for the benefit of regulators, academics, policymakers, judges, in-house counsel and lawyers specialising in competition law and intellectual property law.
This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
The Oxford Handbook of Clinical Haematology provides core and concise information on the entire spectrum of blood disorders affecting both adults and children. Updated for its fourth edition, it includes all major advances in the specialty, including malignant haematology, haemato-oncology, coagulation, transfusion medicine, and red cell disorders, with a brand new chapter on rare diseases. Practically focused, and specifically designed for ease-of-use, and rapid access to the information you need, this handbook is an indispensable resource on all aspects of haematology for all trainee doctors, nurses, technicians, and research professionals. The handbook is divided into clinical approach and disease-specific areas. The clinical approach section outlines various symptoms and signs in patients with blood disease to enable the reader to formulate a sensible differential diagnosis beofre embarking on investigation and treatment. The disease-specific section is written by four authors whose expertise covers the whole breadth of diseases included in the book. All authors have contributed to national guidelines (e.g. British Committee for Standards in Haematology, BCSH) and are experts in the evidence base that exists for each topic. The Oxford Handbook of Clinical Haematology offers a concise and logical approach to caring for patients with diseases of the blood.
This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.
Graph transformation systems are a powerful formal model to capture model transformations or systems with infinite state space, among others. However, this expressive power comes at the cost of rather limited automated analysis capabilities. The general case of unbounded many initial graphs or infinite state spaces is only supported by approaches with rather limited scalability or expressiveness. In this report we improve an existing approach for the automated verification of inductive invariants for graph transformation systems. By employing partial negative application conditions to represent and check many alternative conditions in a more compact manner, we can check examples with rules and constraints of substantially higher complexity. We also substantially extend the expressive power by supporting more complex negative application conditions and provide higher accuracy by employing advanced implication checks. The improvements are evaluated and compared with another applicable tool by considering three case studies.
This thesis presents the foundations, the initial state, and the progress made in modelling and implementing a real-world and real-time online microscopic traffic simulation system for highway traffic. To successfully model and implement such a simulation system, this thesis recommends the use of a number of formal methods applied at the right places. As part of the recommendation, this thesis proposes a microscopic traffic simulation system. To explore the feasibility and the potential of the recommended methods, it observes and examines the proposed system from multiple views and under various different aspects. As part of the examination, this thesis provides a (semi-)formal specification, a model implementation, an implementation of a productive system, and the benefits that result from validating such a system. The results and any proper application of them have the potential to increase the reliability and the trustworthiness for any future implementation of the proposed simulation system. The presented results additionally motivate to apply the proposed approach to similar simulation systems. The thesis concludes the presentation of the results with some considerations for future implementations.
Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.