A comprehensive examination of the interfaces of logic, computer science, and game theory, drawing on twenty years of research on logic and games. This book draws on ideas from philosophical logic, computational logic, multi-agent systems, and game theory to offer a comprehensive account of logic and games viewed in two complementary ways. It examines the logic of games: the development of sophisticated modern dynamic logics that model information flow, communication, and interactive structures in games. It also examines logic as games: the idea that logical activities of reasoning and many related tasks can be viewed in the form of games. In doing so, the book takes up the “intelligent interaction” of agents engaging in competitive or cooperative activities and examines the patterns of strategic behavior that arise. It develops modern logical systems that can analyze information-driven changes in players' knowledge and beliefs, and introduces the “Theory of Play” that emerges from the combination of logic and game theory. This results in a new view of logic itself as an interactive rational activity based on reasoning, perception, and communication that has particular relevance for games. Logic in Games, based on a course taught by the author at Stanford University, the University of Amsterdam, and elsewhere, can be used in advanced seminars and as a resource for researchers.
The subject of Time has a wide intellectual appeal across different dis ciplines. This has shown in the variety of reactions received from readers of the first edition of the present Book. Many have reacted to issues raised in its philosophical discussions, while some have even solved a number of the open technical questions raised in the logical elaboration of the latter. These results will be recorded below, at a more convenient place. In the seven years after the first publication, there have been some noticeable newer developments in the logical study of Time and temporal expressions. As far as Temporal Logic proper is concerned, it seems fair to say that these amount to an increase in coverage and sophistication, rather than further break-through innovation. In fact, perhaps the most significant sources of new activity have been the applied areas of Linguistics and Computer Science (including Artificial Intelligence), where many intriguing new ideas have appeared presenting further challenges to temporal logic. Now, since this Book has a rather tight composition, it would have been difficult to interpolate this new material without endangering intelligibility.
This book is an exploration of current trends in logical theories of information flow across various fields, such as belief revision in computer science or dynamic semantics in linguistics. It provides one mathematical perspective encompassing all of these. This framework generates a new agenda of questions concerning dynamic inference and dynamic operators. The result is a mathematical theory of process models, simulations between these, and modal languages over them, which is developed in quite some detail. New results include theorems on expressive completeness, representation of styles of inference, and new kinds of decidable remodeling for standard logics. This theory is also confronted with practice in computer science, linguistics and philosophy.
Language in Action demonstrates the viability of mathematical research into the foundations of categorial grammar, a topic at the border between logic and linguistics. Since its initial publication it has become the classic work in the foundations of categorial grammar. A new introduction to this paperback edition updates the open research problems and records relevant results through pointers to the literature. Van Benthem presents the categorial processing of syntax and semantics as a central component in a more general dynamic logic of information flow, in tune with computational developments in artificial intelligence and cognitive science. Using the paradigm of categorial grammar, he describes the substructural logics driving the dynamics of natural language syntax and semantics. This is a general type-theoretic approach that lends itself easily to proof-theoretic and semantic studies in tandem with standard logic. The emphasis is on a broad landscape of substructural categorial logics and their proof-theoretical and semantic peculiarities. This provides a systematic theory for natural language understanding, admitting of significant mathematical results. Moreover, the theory makes possible dynamic interpretations that view natural languages as programming formalisms for various cognitive activities.
This book develops a view of logic as a theory of information-driven agency and intelligent interaction between many agents - with conversation, argumentation and games as guiding examples. It provides one uniform account of dynamic logics for acts of inference, observation, questions and communication, that can handle both update of knowledge and revision of beliefs. It then extends the dynamic style of analysis to include changing preferences and goals, temporal processes, group action and strategic interaction in games. Throughout, the book develops a mathematical theory unifying all these systems, and positioning them at the interface of logic, philosophy, computer science and game theory. A series of further chapters explores repercussions of the 'dynamic stance' for these areas, as well as cognitive science.
Recent developments in the semantics of natural language seem to lead to a genuine synthesis of ideas from linguistics and logic, producing novel concepts and questions of interest to both parent disciplines. This book is a collection of essays on such new topics, which have arisen over the past few years. Taking a broad view, developments in formal semantics over the past decade can be seen as follows. At the beginning stands Montague's pioneering work, showing how a rigorous semantics can be given for complete fragments of natural language by creating a suitable fit between syntactic categories and semantic types. This very enterprise already dispelled entrenched prejudices concerning the separation of linguistics and logic. Having seen the light, however, there is no reason at all to stick to the letter of Montague's proposals, which are often debatable. Subsequently, then, many improvements have been made upon virtually every aspect of the enterprise. More sophisticated grammars have been inserted (lately, lexical-functional grammar and generalized phrase structure grammar), more sensitive model structures have been developed (lately, 'partial' rather than 'total' in their com position), and even the mechanism of interpretation itself may be fine-tuned more delicately, using various forms of 'representations' mediating between linguistic items and semantic reality. In addition to all these refinements of the semantic format, descriptive coverage has extended considerably.
A comprehensive examination of the interfaces of logic, computer science, and game theory, drawing on twenty years of research on logic and games. This book draws on ideas from philosophical logic, computational logic, multi-agent systems, and game theory to offer a comprehensive account of logic and games viewed in two complementary ways. It examines the logic of games: the development of sophisticated modern dynamic logics that model information flow, communication, and interactive structures in games. It also examines logic as games: the idea that logical activities of reasoning and many related tasks can be viewed in the form of games. In doing so, the book takes up the “intelligent interaction” of agents engaging in competitive or cooperative activities and examines the patterns of strategic behavior that arise. It develops modern logical systems that can analyze information-driven changes in players' knowledge and beliefs, and introduces the “Theory of Play” that emerges from the combination of logic and game theory. This results in a new view of logic itself as an interactive rational activity based on reasoning, perception, and communication that has particular relevance for games. Logic in Games, based on a course taught by the author at Stanford University, the University of Amsterdam, and elsewhere, can be used in advanced seminars and as a resource for researchers.
The subject of Time has a wide intellectual appeal across different dis ciplines. This has shown in the variety of reactions received from readers of the first edition of the present Book. Many have reacted to issues raised in its philosophical discussions, while some have even solved a number of the open technical questions raised in the logical elaboration of the latter. These results will be recorded below, at a more convenient place. In the seven years after the first publication, there have been some noticeable newer developments in the logical study of Time and temporal expressions. As far as Temporal Logic proper is concerned, it seems fair to say that these amount to an increase in coverage and sophistication, rather than further break-through innovation. In fact, perhaps the most significant sources of new activity have been the applied areas of Linguistics and Computer Science (including Artificial Intelligence), where many intriguing new ideas have appeared presenting further challenges to temporal logic. Now, since this Book has a rather tight composition, it would have been difficult to interpolate this new material without endangering intelligibility.
Language in Action demonstrates the viability of mathematical research into the foundations of categorial grammar, a topic at the border between logic and linguistics. Since its initial publication it has become the classic work in the foundations of categorial grammar. A new introduction to this paperback edition updates the open research problems and records relevant results through pointers to the literature. Van Benthem presents the categorial processing of syntax and semantics as a central component in a more general dynamic logic of information flow, in tune with computational developments in artificial intelligence and cognitive science. Using the paradigm of categorial grammar, he describes the substructural logics driving the dynamics of natural language syntax and semantics. This is a general type-theoretic approach that lends itself easily to proof-theoretic and semantic studies in tandem with standard logic. The emphasis is on a broad landscape of substructural categorial logics and their proof-theoretical and semantic peculiarities. This provides a systematic theory for natural language understanding, admitting of significant mathematical results. Moreover, the theory makes possible dynamic interpretations that view natural languages as programming formalisms for various cognitive activities.
Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.
This text explores four major features of human society in their ecological and historical context: the origins of priests and organised religion; the rise of military men in an agrarian society; economic expansion and growth; and civilising and decivilising trends over time.
This book contains a strictly refereed selection of revised full papers chosen from the papers accepted for presentation during the 11th Workshop on Abstract Data Types held jointly with the 8th COMPASS Workshop in Oslo, Norway, in September 1995. The 25 research papers included were chosen from 57 pre-selected workshop presentations; also included are six invited contributions. The volume reports the progress achieved in the area of algebraic specification since the predecessor meeting held in May 1994.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.