For nearly two centuries, the relation between analytic functions of one complex variable, their boundary values, harmonic functions, and the theory of Fourier series has been one of the central topics of study in mathematics. The topic stands on its own, yet also provides very useful mathematical applications. This text provides a self-contained introduction to the corresponding questions in several complex variables: namely, analysis on the Heisenberg group and the study of the solutions of the boundary Cauchy-Riemann equations. In studying this material, readers are exposed to analysis in non-commutative compact and Lie groups, specifically the rotation group and the Heisenberg groups-both fundamental in the theory of group representations and physics. Introduced in a concrete setting are the main ideas of the Calderón-Zygmund-Stein school of harmonic analysis. Also considered in the book are some less conventional problems of harmonic and complex analysis, in particular, the Morera and Pompeiu problems for the Heisenberg group, which relates to questions in optics, tomography, and engineering. The book was borne of graduate courses and seminars held at the University of Maryland (College Park), the University of Toronto (ON), Georgetown University (Washington, DC), and the University of Georgia (Athens). Readers should have an advanced undergraduate understanding of Fourier analysis and complex analysis in one variable.
The book studies sub-Laplacian operators on a family of model domains in C^{n+1}, which is a good point-wise model for a $CR$ manifold with non-degenerate Levi form. A considerable amount of study has been devoted to partial differential operators constructed from non-commuting vector fields, in which the non-commutativity plays an essential role in determining the regularity properties of the operators.
By the end of the nineteenth century, Chinese culture had fallen into a stasis, and intellectuals began to go abroad for new ideas. What emerged was an exciting musical genre that C. C. Liu terms "new music." With no direct ties to traditional Chinese music, "new music" reflects the compositional techniques and musical idioms of eighteenth- and nineteenth-century European styles. Liu traces the genesis and development of "new music" throughout the twentieth century, deftly examining the social and political forces that shaped "new music" and its uses by political activists and the government.
The book studies sub-Laplacian operators on a family of model domains in C^{n+1}, which is a good point-wise model for a $CR$ manifold with non-degenerate Levi form. A considerable amount of study has been devoted to partial differential operators constructed from non-commuting vector fields, in which the non-commutativity plays an essential role in determining the regularity properties of the operators.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.