Due to the complexity of operational forestry problems, computing applications are becoming pervasive in all aspects of forest and natural resource management. This book provides a comprehensive introduction to computers and their applications in forest and natural resource management and is designed for both undergraduate and graduate students in forestry and natural resources. It introduces state-of-the-art applications for several of the most important computer technologies in terms of data acquisition, data manipulation, basic programming techniques, and other related computer and Internet concepts and applications. This book consists of six parts and 19 chapters.
This book explains forest and woody biomass harvest, harvesting machines, systems, logistics, supply chain management, best management practices, harvest scheduling and carbon sequestration. It also covers applications of harvesting principles in forest and biomass management practices. The book provides an in-depth understanding of functions and applications of current and future harvesting technologies, the unique characteristics of harvesting machine with respect to cost, productivity, and environmental impacts. Special features include harvest machine illustrations and images of field operations, tabular presentations of filed studies of forest operations and detailed modelling processes for forest and biomass harvest logistics and supply chain management. Specifically, the book is designed for students, researchers, educators, and practitioners in the field of forest and biomass harvest and logistics. The book’s contents have been tested in teaching as the Harvesting Forest Product class for undergraduates and graduates in the Division of Forestry and Natural Resources at West Virginia University since 2000. The information contained in this book is a robust reference resource for students who would be future forest and biomass managers, timber contractors, entrepreneurs, researchers, and educators in the fields of forest and biomass operations, engineering, and resource management.
This book explains forest and woody biomass harvest, harvesting machines, systems, logistics, supply chain management, best management practices, harvest scheduling and carbon sequestration. It also covers applications of harvesting principles in forest and biomass management practices. The book provides an in-depth understanding of functions and applications of current and future harvesting technologies, the unique characteristics of harvesting machine with respect to cost, productivity, and environmental impacts. Special features include harvest machine illustrations and images of field operations, tabular presentations of filed studies of forest operations and detailed modelling processes for forest and biomass harvest logistics and supply chain management. Specifically, the book is designed for students, researchers, educators, and practitioners in the field of forest and biomass harvest and logistics. The book’s contents have been tested in teaching as the Harvesting Forest Product class for undergraduates and graduates in the Division of Forestry and Natural Resources at West Virginia University since 2000. The information contained in this book is a robust reference resource for students who would be future forest and biomass managers, timber contractors, entrepreneurs, researchers, and educators in the fields of forest and biomass operations, engineering, and resource management.
The book takes the inventory control perspective to tackle empty container repositioning logistics problems in regional transportation systems by explicitly considering the features such as demand imbalance over space, dynamic operations over time, uncertainty in demand and transport, and container leasing phenomenon. The book has the following unique features. First, it provides a discussion of broad empty equipment logistics including empty freight vehicle redistribution, empty passenger vehicle redistribution, empty bike repositioning, empty container chassis repositioning, and empty container repositioning (ECR) problems. The similarity and unique characteristics of ECR compared to other empty equipment repositioning problems are explained. Second, we adopt the stochastic dynamic programming approach to tackle the ECR problems, which offers an algorithmic strategy to characterize the optimal policy and captures the sequential decision-making phenomenon in anticipation of uncertainties over time and space. Third, we are able to establish closed-form solutions and structural properties of the optimal ECR policies in relatively simple transportation systems. Such properties can then be utilized to construct threshold-type ECR policies for more complicated transportation systems. In fact, the threshold-type ECR policies resemble the well-known (s, S) and (s, Q) policies in inventory control theory. These policies have the advantages of being decentralized, easy to understand, easy to operate, quick response to random events, and minimal on-line computation and communication. Fourth, several sophisticated optimization techniques such as approximate dynamic programming, simulation-based meta-heuristics, stochastic approximation, perturbation analysis, and ordinal optimization methods are introduced to solve the complex stochastic optimization problems. The book will be of interest to researchers and professionals in logistics, transport, supply chain, and operations research.
Due to the complexity of operational forestry problems, computing applications are becoming pervasive in all aspects of forest and natural resource management. This book provides a comprehensive introduction to computers and their applications in forest and natural resource management and is designed for both undergraduate and graduate students in forestry and natural resources. It introduces state-of-the-art applications for several of the most important computer technologies in terms of data acquisition, data manipulation, basic programming techniques, and other related computer and Internet concepts and applications. This book consists of six parts and 19 chapters.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.