Non linearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihood's for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modification to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student.
Non linearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihood's for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modification to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.