This book presents an overview of recent developments in biostatistics and bioinformatics. Written by active researchers in these emerging areas, it is intended to give graduate students and new researchers an idea of where the frontiers of biostatistics and bioinformatics are as well as a forum to learn common techniques in use, so that they can advance the fields via developing new techniques and new results. Extensive references are provided so that researchers can follow the threads to learn more comprehensively what the literature is and to conduct their own research. In particulars, the book covers three important and rapidly advancing topics in biostatistics: analysis of survival and longitudinal data, statistical methods for epidemiology, and bioinformatics.
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel''s distinguished contributions.
As the successor of social science, Yu Sheng had always believed in the belief in science and opposed feudal superstition. From July onwards, all sorts of ghosts appeared and even stepped into the gates of hell, opening the gates of a new world from then on. Early stage. "There's a ghost!" Yu Sheng grabbed onto Lu Jingqing in fright, as he cried out pitifully in a weak voice, "There's a ghost!" Have you never seen a ghost before? " Lu Tianqing answered. Today, he was once again a stand-alone representative who was cold and unfeeling in order to train his future wife. Yu Sheng: The strong I don't cry. Mid-term. "Yes." Yu Sheng was nervous as he fought against the incoming ghosts. Ten minutes later. I couldn't win, so I slipped away. " He nimbly hid behind Lu Zhiqing. Lu Tianqing raised his chin, his face closing in as he gave a long kiss, "Hide yourself well." Finally. Yu Sheng stared at the reckless ghost in front of him indifferently. He yawned and handed over the snacks in his hand. "Spicy gluten?" The walking ghost banner, with the big boss who pretended to be weak chicken, ghost during the investigation of the love.
A compact, master's-level textbook on financial econometrics, focusing on methodology and including real financial data illustrations throughout. The mathematical level is purposely kept moderate, allowing the power of the quantitative methods to be understood without too much technical detail.
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
This volume presents selections of Peter J. Bickel’s major papers, along with comments on their novelty and impact on the subsequent development of statistics as a discipline. Each of the eight parts concerns a particular area of research and provides new commentary by experts in the area. The parts range from Rank-Based Nonparametrics to Function Estimation and Bootstrap Resampling. Peter’s amazing career encompasses the majority of statistical developments in the last half-century or about about half of the entire history of the systematic development of statistics. This volume shares insights on these exciting statistical developments with future generations of statisticians. The compilation of supporting material about Peter’s life and work help readers understand the environment under which his research was conducted. The material will also inspire readers in their own research-based pursuits. This volume includes new photos of Peter Bickel, his biography, publication list, and a list of his students. These give the reader a more complete picture of Peter Bickel as a teacher, a friend, a colleague, and a family man.
During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel's distinguished contributions.
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
This book is on data-analytic approaches to regression problems arising from many scientific disciplines. These approaches are also called nonparametric regression in the literature. The aim of non parametric methods is to relax assumptions on the form of a regres sion function, and to let data search for a suitable function that describes well the available data. These approaches are powerful in exploring fine structural relationships and provide very useful diagnostic tools for parametric models. Over the last two decades, vast efforts have been devoted to nonparametric regression analyses. This book hopes to bring an up-to-date picture on the state of the art of nonparametric regres sion techniques. The emphasis of this book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. These problems include least squares regression, quantile and robust re gression, survival analysis, generalized linear models and nonlinear time series. Local polynomial modelling is employed in a large frac tion of the book, but other key ideas of nonparametric regression are also discussed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.