This brief provides an overview of the requirements, challenges, design issues and major techniques for seamless and secure communications over heterogeneous wireless networks. It summarizes and provides detailed insights into the latest research on handoff management, mobility management, fast authentication and security management to support seamless and secure roaming for mobile clients. The reader will also learn about the challenges in developing relevant technologies and providing ubiquitous Internet access over heterogeneous wireless networks. The authors have extensive experience in implementing such technologies over heterogeneous wireless networks, thus enabling them to bridge the gap between the theoretical results of research and the real practice. Combining basic theoretical concepts and practical implementation, this brief is ideal for professionals and researchers in the field. Advanced-level students interested in computer communication networks and wireless technologies will also find the content helpful.
The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.
This book constitutes the refereed proceedings of the 6th International Workshop on Advanced Parallel Processing Technologies, APPT 2005, held in Hong Kong, China in September 2005. The 55 revised full papers presented were carefully reviewed and selected from over 220 submissions. All current aspects in parallel and distributed computing are addressed ranging from hardware and software issues to algorithmic aspects and advanced applications. The papers are organized in topical sections on architecture, algorithm and theory, system and software, grid computing, networking, and applied technologies.
This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engineers designing their own similar SHM products, and the various concrete examples of problem formulation and algorithm design will make this an essential read for practitioners, researchers and students alike.
This book systematically presents the wireless sensing technology, which has become a promising sensing paradigm in recent years. It includes the introduction of underlying sensing principles, wireless signals, sensing methodologies and enabled applications. Meanwhile, it provides case studies to demonstrate how wireless sensing is applied for representative human and object sensing applications. This book also provides a wireless sensing framework as a guidance to understand and design a wireless sensing system or prototype based on their needs. It also presents a critical investigation of the challenges in achieving wireless sensing in both signal-level and application-level contexts. Accordingly, it summarizes the typical solutions to tackle the related challenges. Researchers and advanced-level students in computer science or electrical engineering working on the design of a wireless system will find this book useful as a reference. Professionals working in the wireless sensing industry will also find this book valuable as a reference tool.
The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.
This book systematically presents the wireless sensing technology, which has become a promising sensing paradigm in recent years. It includes the introduction of underlying sensing principles, wireless signals, sensing methodologies and enabled applications. Meanwhile, it provides case studies to demonstrate how wireless sensing is applied for representative human and object sensing applications. This book also provides a wireless sensing framework as a guidance to understand and design a wireless sensing system or prototype based on their needs. It also presents a critical investigation of the challenges in achieving wireless sensing in both signal-level and application-level contexts. Accordingly, it summarizes the typical solutions to tackle the related challenges. Researchers and advanced-level students in computer science or electrical engineering working on the design of a wireless system will find this book useful as a reference. Professionals working in the wireless sensing industry will also find this book valuable as a reference tool.
This book constitutes the refereed proceedings of the 6th International Workshop on Advanced Parallel Processing Technologies, APPT 2005, held in Hong Kong, China in September 2005. The 55 revised full papers presented were carefully reviewed and selected from over 220 submissions. All current aspects in parallel and distributed computing are addressed ranging from hardware and software issues to algorithmic aspects and advanced applications. The papers are organized in topical sections on architecture, algorithm and theory, system and software, grid computing, networking, and applied technologies.
This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engineers designing their own similar SHM products, and the various concrete examples of problem formulation and algorithm design will make this an essential read for practitioners, researchers and students alike.
The proliferation of powerful but cheap devices, together with the availability of a plethora of wireless technologies, has pushed for the spread of the Wireless Internet of Things (WIoT), which is typically much more heterogeneous, dynamic, and general-purpose if compared with the traditional IoT. The WIoT is characterized by the dynamic interaction of traditional infrastructure-side devices, e.g., sensors and actuators, provided by municipalities in Smart City infrastructures, and other portable and more opportunistic ones, such as mobile smartphones, opportunistically integrated to dynamically extend and enhance the WIoT environment. A key enabler of this vision is the advancement of software and middleware technologies in various mobile-related sectors, ranging from the effective synergic management of wireless communications to mobility/adaptivity support in operating systems and differentiated integration and management of devices with heterogeneous capabilities in middleware, from horizontal support to crowdsourcing in different application domains to dynamic offloading to cloud resources, only to mention a few. The book presents state-of-the-art contributions in the articulated WIoT area by providing novel insights about the development and adoption of middleware solutions to enable the WIoT vision in a wide spectrum of heterogeneous scenarios, ranging from industrial environments to educational devices. The presented solutions provide readers with differentiated point of views, by demonstrating how the WIoT vision can be applied to several aspects of our daily life in a pervasive manner.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.