This thesis focuses on the manipulation of sound properties by artificial materials. It elaborates on the fundamental design of acoustic metasurfaces and metastructures as the extension of metamaterials, and their functionality in the manipulation of sound properties. A broad and comprehensive guideline of designing acoustic metasurfaces and metastructures is also provided. Based on the proposed subwavelength metasurfaces and the metastructures with a simplified layout, multiple potential applications are demonstrated. This thesis will appeal to acoustic engineers and researchers who are interested in designing acoustic artificial structures.
This book discusses various aspects of text data mining. Unlike other books that focus on machine learning or databases, it approaches text data mining from a natural language processing (NLP) perspective. The book offers a detailed introduction to the fundamental theories and methods of text data mining, ranging from pre-processing (for both Chinese and English texts), text representation and feature selection, to text classification and text clustering. It also presents the predominant applications of text data mining, for example, topic modeling, sentiment analysis and opinion mining, topic detection and tracking, information extraction, and automatic text summarization. Bringing all the related concepts and algorithms together, it offers a comprehensive, authoritative and coherent overview. Written by three leading experts, it is valuable both as a textbook and as a reference resource for students, researchers and practitioners interested in text data mining. It can also be used for classes on text data mining or NLP.
Topological insulator is one of the hottest research topics in solid state physics. This is the first book to describe the vibrational spectroscopies and electrical transport of topological insulator Bi2Se3, one of the most exciting areas of research in condensed matter physics. In particular, attempts have been made to summarize and develop the various theories and new experimental techniques developed over years from the studies of Raman scattering, infrared spectroscopy and electrical transport of topological insulator Bi2Se3. It is intended for material and physics researchers and graduate students doing research in the field of optical and electrical properties of topological insulators, providing them the physical understanding and mathematical tools needed to engage research in this quickly growing field. Some key topics in the emerging field of topological insulators are introduced.
Micro and Nano Sulfide Solid Lubrication" covers the basic principles of sulfide solid lubrication, which is an important field of tribology, an effective means of reducing friction and wear on machine parts, and is closely related to the broader problem of saving energy and materials. This book discusses the low-temperature sulfuration technology which was first developed in China, as well as the two-step methods for preparing various sulfide lubrication films (coatings) created by the authors, which are described in detail. This book is intended for researchers in the fields of tribology, materials science, mechanical design, and structural design. Dr. Haidou Wang and Binshi Xu are both professors at the National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, China; Jiajun Liu is a professor at the Department of Mechanical Engineering, Tsinghua University, China.
This book presents a method for replicating natural butterfly wing scales using a variety of metals for state-of-the-art applications requiring high surface-enhancement properties. During the past decade, three dimensional (3D) sub-micrometer structures have attracted considerable attention for optical applications. These 3D subwavelength metallic structures are, however, difficult to prepare. By contrast, the 3D superstructures of butterfly wing scales, with more than 175 000 morphologies, are efficiently engineered by nature. Natural butterfly wing scales feature 3D sub-micrometer structures that are superior to many human designs in terms of structural complexity, reproducibility, and cost. Such natural wealth offers a versatile chemical route via the replication of these structures into functional metals. A single versatile chemical route can be used to produce butterfly scales in seven different metals. These synthesized structures have the potential for catalytic (Au, Pt, Pd), thermal (Ag, Au, Cu), electrical (Au, Cu, Ag), magnetic (Co, Ni), and optical (Au, Ag, Cu) applications. Plasmon-active Au, Cu, Ag butterfly scales have exhibited excellent properties in surface-enhanced Raman scattering (SERS). The Au scales as SERS substrates have ten times the analyte detection sensitivity and are one-tenth the cost of their human-designed commercial counterparts (KlariteTM). Preliminary mechanisms of these surface-enhancement phenomena are also reviewed.
Rock Mechanics and Engineering: Prediction and Control of Landslides and Geological Disasters presents the state-of-the-art in monitoring and forecasting geotechnical hazards during the survey and design, construction, and operation of a railway. This volume offers the latest research and practical knowledge on the regularity of disaster-causing activities, and the monitoring and forecasting of rockfalls, landslides, and debris flow induced by rainfall and human activity. The book gives guidance on how to optimize railway design, prevent and control measures during construction, and geological hazard remediation. The book also advises engineers on how to achieve traffic safety on high-speed railways. Eleven chapters present best practices in the prediction and control of landslides and rockfalls in geological disasters, derived from years of geotechnical engineering research and practice on high-speed railways in China. High-speed railways bring characteristic geotechnical challenges including a complete maintenance system, a long railway line, and the subjection of the geological body to cyclic loads. Since the damage to the geological body is influenced by fatigue as well as rock and soil strength and hydrology, the study of geotechnical hazards to high-speed rail is very complex. Monitoring and predicting such hazards on high-speed railways is a significant challenge to their safe construction and operation. - Presents the latest technical achievement and development trends in landslide and rockfall forecasting - Considers the challenges of high-speed railways to the prediction and control of geotechnical hazards - Gives both in-situ and laboratory tests for rockfalls, and considers the collapse process of rock slopes - Describes the principles of slope monitoring with specific reference to high-speed rail - Details an automatic monitoring system for geotechnical hazards to high-speed rail
This thesis focuses on the manipulation of sound properties by artificial materials. It elaborates on the fundamental design of acoustic metasurfaces and metastructures as the extension of metamaterials, and their functionality in the manipulation of sound properties. A broad and comprehensive guideline of designing acoustic metasurfaces and metastructures is also provided. Based on the proposed subwavelength metasurfaces and the metastructures with a simplified layout, multiple potential applications are demonstrated. This thesis will appeal to acoustic engineers and researchers who are interested in designing acoustic artificial structures.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.