Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.
This book is an introductory guide to using Lévy processes for credit risk modelling. It covers all types of credit derivatives: from the single name vanillas such as Credit Default Swaps (CDSs) right through to structured credit risk products such as Collateralized Debt Obligations (CDOs), Constant Proportion Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs) as well as new advanced rating models for Asset Backed Securities (ABSs). Jumps and extreme events are crucial stylized features, essential in the modelling of the very volatile credit markets - the recent turmoil in the credit markets has once again illustrated the need for more refined models. Readers will learn how the classical models (driven by Brownian motions and Black-Scholes settings) can be significantly improved by using the more flexible class of Lévy processes. By doing this, extreme event and jumps can be introduced into the models to give more reliable pricing and a better assessment of the risks. The book brings in high-tech financial engineering models for the detailed modelling of credit risk instruments, setting up the theoretical framework behind the application of Lévy Processes to Credit Risk Modelling before moving on to the practical implementation. Complex credit derivatives structures such as CDOs, ABSs, CPPIs, CPDOs are analysed and illustrated with market data.
Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.
This book is an introductory guide to using Lévy processes for credit risk modelling. It covers all types of credit derivatives: from the single name vanillas such as Credit Default Swaps (CDSs) right through to structured credit risk products such as Collateralized Debt Obligations (CDOs), Constant Proportion Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs) as well as new advanced rating models for Asset Backed Securities (ABSs). Jumps and extreme events are crucial stylized features, essential in the modelling of the very volatile credit markets - the recent turmoil in the credit markets has once again illustrated the need for more refined models. Readers will learn how the classical models (driven by Brownian motions and Black-Scholes settings) can be significantly improved by using the more flexible class of Lévy processes. By doing this, extreme event and jumps can be introduced into the models to give more reliable pricing and a better assessment of the risks. The book brings in high-tech financial engineering models for the detailed modelling of credit risk instruments, setting up the theoretical framework behind the application of Lévy Processes to Credit Risk Modelling before moving on to the practical implementation. Complex credit derivatives structures such as CDOs, ABSs, CPPIs, CPDOs are analysed and illustrated with market data.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.