The path from relatively unstructured egg to full organism is one of the most fascinating trajectories in the biological sciences. Its complexity calls for a very high level of organization, with an array of subprocesses in constant communication with each other. These notes introduce an interleaved set of mathematical models representative of research in the last few decades, as well as the techniques that have been developed for their solution. Such models offer an effective way of incorporating reliable data in a concise form, provide an approach complementary to the techniques of molecular biology, and help to inform and direct future research. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
It is not a large overstatement to claim that mathematics has traditionally arisen from attempts to understand quite concrete events in the physical world. The accelerated sophistication of the mathematical community has perhaps obscured this fact, especially during the present century, with the abstract becoming the hallmark of much of respectable mathematics. As a result of the inaccessibility of such work, practicing scientists have often been compelled to fashion their own mathematical tools, blissfully unaware of their prior existence in far too elegant and far too general form. But the mathematical sophistication of scientists has grown rapidly too, as has the scientific sophistication of many mathematicians, and the real worl- suitably defined - is once more serving its traditional role. One of the fields most enriched by this infusion has been that of combinatorics. This book has been written in a way as a tribute to those natural scientists whose breadth of vision has inparted a new vitality to a dormant giant. The present text arose out of a course in Combinatorial Methods given by the writer at the Courant Institute during 1967-68. Its structure has been determined by an attempt to reach an informed but heterogeneous group of students in mathematics, physics, and chemistry. Its lucidity has been enhanced immeasurably by the need to satisfy a very resolute critic, Professor Ora E. Percus, who is responsible for the original lecture notes as well as for their major modifications.
The massive research effort known as the Human Genome Project is an attempt to record the sequence of the three trillion nucleotides that make up the human genome and to identify individual genes within this sequence. While the basic effort is of course a biological one, the description and classification of sequences also lend themselves naturally to mathematical and statistical modeling. This short textbook on the mathematics of genome analysis presents a brief description of several ways in which mathematics and statistics are being used in genome analysis and sequencing. It will be of interest not only to students but also to professional mathematicians curious about the subject.
Any organism, to survive, must use a variety of defense mechanisms. A relatively recent evolutionary development is that of the adaptive immune system, carried to a quite sophisticated level by mammals. The complexity of this system calls for its encapsulation by mathematical models, and this book aims at the associated description and analysis. In the process, it introduces tools that should be in the armory of any current or aspiring applied mathematician, in the context of, arguably, the most effective system nature has devised to protect an organism from its manifold invisible enemies.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.