The Boost Graph Library (BGL) is the first C++ library to apply the principles of generic programming to the construction of the advanced data structures and algorithms used in graph computations. Problems in such diverse areas as Internet packet routing, molecular biology, scientific computing, and telephone network design can be solved by using graph theory. This book presents an in-depth description of the BGL and provides working examples designed to illustrate the application of BGL to these real-world problems. Written by the BGL developers, The Boost Graph Library: User Guide and Reference Manual gives you all the information you need to take advantage of this powerful new library. Part I is a complete user guide that begins by introducing graph concepts, terminology, and generic graph algorithms. This guide also takes the reader on a tour through the major features of the BGL; all motivated with example problems. Part II is a comprehensive reference manual that provides complete documentation of all BGL concepts, algorithms, and classes. Readers will find coverage of: Graph terminology and concepts Generic programming techniques in C++ Shortest-path algorithms for Internet routing Network planning problems using the minimum-spanning tree algorithms BGL algorithms with implicitly defined graphs BGL Interfaces to other graph libraries BGL concepts and algorithms BGL classes–graph, auxiliary, and adaptor Groundbreaking in its scope, this book offers the key to unlocking the power of the BGL for the C++ programmer looking to extend the reach of generic programming beyond the Standard Template Library.
A hands-on approach to understanding and building compilers. Compilers are notoriously some of the most difficult programs to teach and understand. Most books about compilers dedicate one chapter to each progressive stage, a structure that hides how language features motivate design choices. By contrast, this innovative textbook provides an incremental approach that allows students to write every single line of code themselves. Essentials of Compilation guides the reader in constructing their own compiler for a small but powerful programming language, adding complex language features as the book progresses. Jeremy Siek explains the essential concepts, algorithms, and data structures that underlie modern compilers and lays the groundwork for future study of advanced topics. Already in wide use by students and professionals alike, this rigorous but accessible book invites readers to learn by doing. Deconstructs the challenge of compiler construction into bite-sized pieces Enhances learning by connecting language features to compiler design choices Develops understanding of how programs are mapped onto computer hardware Learn-by-doing approach suitable for students and professionals Proven in the classroom Extensive ancillary resources include source code and solutions
A hands-on approach to understanding and building compilers. Compilers are notoriously some of the most difficult programs to teach and understand. Most books about compilers dedicate one chapter to each progressive stage, a structure that hides how language features motivate design choices. By contrast, this innovative textbook provides an incremental approach that allows students to write every single line of code themselves. Essentials of Compilation guides the reader in constructing their own compiler for a small but powerful programming language, adding complex language features as the book progresses. Jeremy Siek explains the essential concepts, algorithms, and data structures that underlie modern compilers and lays the groundwork for future study of advanced topics. Already in wide use by students and professionals alike, this rigorous but accessible book invites readers to learn by doing. Deconstructs the challenge of compiler construction into bite-sized pieces Enhances learning by connecting language features to compiler design choices Develops understanding of how programs are mapped onto computer hardware Learn-by-doing approach suitable for students and professionals Proven in the classroom Extensive ancillary resources include source code and solutions
A hands-on approach to understanding and building compilers using the programming language Python. Compilers are notoriously difficult programs to teach and understand. Most books about compilers dedicate one chapter to each progressive stage, a structure that hides how language features motivate design choices. By contrast, this innovative textbook provides an incremental approach that allows students to write every single line of code themselves. Jeremy Siek guides the reader in constructing their own compiler in the powerful object-oriented programming language Python, adding complex language features as the book progresses. Essentials of Compilation explains the essential concepts, algorithms, and data structures that underlie modern compilers and lays the groundwork for future study of advanced topics. Already in wide use by students and professionals alike, this rigorous but accessible book invites readers to learn by doing. Deconstructs the challenge of compiler construction into bite-sized pieces Enhances learning by connecting language features to compiler design choices Develops understanding of how programs are mapped onto computer hardware Classroom-tested, hands-on approach suitable for students and professionals Extensive ancillary resources include source code and solutions
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.