Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requirements during faults found in almost all modern grid codes. Based on this analysis, the design of a reactive power control system for wind turbines and wind plants is deduced that can provide static and dynamic capabilities to ensure a stable voltage and reactive power control for future grids without remaining synchronous generation.
Here's a first-of-its-kind book that bridges the gap between biomedical imaging and the bioscience community. This unique resource gives you a detailed understanding of imaging platforms, fluorescence imaging, and fundamental image processing algorithms. Further, it guides you through application of advanced image analysis methods and techniques to specific biological problems. The book presents applications that span a wide range of scales, from the detection of signaling events in sub-cellular structures, to the automated analysis of tissue structures. Other critical areas discussed include the dynamics of cell populations and in vivo microscopy. This cutting-edge volume is supported with over 160 illustrations that support key topics throughout the book. CD-ROM Included! Contains full-color images and videos that further illustrate topics discussed in the book.
Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requirements during faults found in almost all modern grid codes. Based on this analysis, the design of a reactive power control system for wind turbines and wind plants is deduced that can provide static and dynamic capabilities to ensure a stable voltage and reactive power control for future grids without remaining synchronous generation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.