This book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes. Readers will discover: A review of the fundamentals and results of the theory of analogue control systems A clear and detailed presentation on the experimental modeling of dynamic processes Frequency synthesis techniques and in the state space of digital control systems Concrete applications of deterministic and stochastic optimal regulation laws New multimedia platforms, training and experimental automated research Various topologies and creation strategies, computer-aided telecontrol regulation systems, as well as a prototype of an automated laboratory that can be remotely operated via the Internet Simple Matlab programs to reproduce, where necessary, the main numerical and graphical results presented Many exercises corrected at the end of each chapter Detailed studies of practical automation projects, aimed at consolidating the skills of the automation profession acquired in the book
This book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes.
Digital technology opens up extraordinary fields for applications that will deeply change the nature of jobs and trade, the very concept of work and the expectations of user–producers. The “masters of algorithms” have disrupted production and services, and this trend will continue for as long as electric energy and the elements of Industry 4.0 are in continued development. Beyond data control, a power struggle is working its way through the links in the value chain: intermediation, control of resources and command over human and physical networks, as well as partnerships, creativity and the political system. Industry 4.0: Paradoxes and Conflicts examines the need for a serious and technological review, as well as for research and training regarding citizenship and politics. This is a new situation in terms of relationships of competence and authority, which must be the subject of scientific as well as political reflections for the whole social body, which needs to be educated about choices. Throughout the book, the author poses the following question: instead of submitting to choices, would it not be better to exercise foresight?
Inventing isn’t easy! After identifying and presenting the 12 "valleys of death", the real obstacles limiting the transition from an original idea to an innovative one, including the notion of socially responsible research, Knowledge Production Modes between Science and Applications 2 applies the concepts introduced in Volume 1. The book starts off with 3D printing, which has essentially broken through all barriers by offering remarkable advantages over existing mechanical technology. The situation is different for 4D printing and bio-printing. First of all, we need to tackle the complexity inherent in these processes, and move away from disciplinarity to find robust, applicable solutions, despite the obstacles. This is possible in niche areas, but currently, low profitability still limits their general applicability and the willingness of researchers to embrace interdisciplinary convergence....
Although complexity makes up the very fabric of our daily lives and has been more or less addressed in a wide variety of knowledge fields, the approaches developed in the Natural Sciences and the results obtained over the past century have not yet permeated Management Sciences very much. The main features of the phenomena that the Natural Sciences deal with are: non-linear behavior, self-organization and chaos. They are analyzed with the framing of what is called “systems thinking”, popularized by the mindset pertaining to cybernetics. All pioneers in systems thinking either had direct or indirect connections with Biology, which is the discipline considered complex par excellence by the public. When applying these concepts to Operations Management Systems and modeling organizations by BDI (Beliefs, Desires, Intentions) agents, the lack of predictability in the conduct of change management that is prone to bifurcations (tipping points) in terms of organizational structures and in forecasting future activities, reveals them to be ingrained in the interplay of complexity and chaos.
Any time objects and their (self-)organization are to be put into use, their models and methods of thinking as well as their designing and manufacturing need to be reinvented. 4D printing is a future technology that is capable of bringing 3D objects to life. This ability, which gives objects the power to change shape or properties over time through energy stimulation from active materials and additive manufacturing, makes it possible to envisage technological breakthroughs while challenging the relationship between people and objects. 4D Printing 1 presents the different facets of this technology, providing an objective, critical and even disruptive viewpoint to enable its existence and development, and to stimulate the creative drive that industry, society and humanity need in the perpetual quest for evolution and transformation.
How to manage the cybersecurity of industrial systems is a crucial question. To implement relevant solutions, the industrial manager must have a clear understanding of IT systems, of communication networks and of control-command systems. They must also have some knowledge of the methods used by attackers, of the standards and regulations involved and of the available security solutions. Cybersecurity of Industrial Systems presents these different subjects in order to give an in-depth overview and to help the reader manage the cybersecurity of their installation. The book addresses these issues for both classic SCADA architecture systems and Industrial Internet of Things (IIoT) systems.
This book introduces an original fractional calculus methodology (‘the infinite state approach’) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation.
This book introduces an original fractional calculus methodology (the infinite state approach) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation. With this approach, fundamental issues such as system state interpretation and system initialization long considered to be major theoretical pitfalls have been solved easily. Although originally introduced for numerical simulation and identification of FDEs, this approach also provides original solutions to many problems such as the initial conditions of fractional derivatives, the uniqueness of FDS transients, formulation of analytical transients, fractional differentiation of functions, state observation and control, definition of fractional energy, and Lyapunov stability analysis of linear and nonlinear fractional order systems. This second volume focuses on the initialization, observation and control of the distributed state, followed by stability analysis of fractional differential systems.
The book deals with requirements engineering in the context of System Engineering. He proposes a method to guide this activity engineering. The method is supported by the SysML modeling language. A first chapter aims to present the context and the associated definitions, to position the requirements engineering in the processes system engineering, to define the modeling and its contributions, and to make the link with the management of IS projects. The second chapter is devoted to the proposed method for implementing the requirements engineering subprocesses. Each of the 8 activities the component is first described before specifying how the SysML language can be exploited to achieve it effectively. Proposal for a book Please fill out the questionnaire below and send it back to Chantal Menascé: c.menasce@iste.co.uk The 3rd chapter is an application of the method to define the needs of the stakeholders of a system. The example is built on the basis of the RobAFIS'2018 competition. The 4th chapter continues the application of the method in the continuity of the IS processes to define the requirements of the same system. The appendices present at the same time a toolbox to realize the engineering of the requirements but also the complete results of engineering in Chapters 3 and 4.
Who hasn’t dreamed of seeing matter transformed in a way that suits you? This is the goal of 4D printing, using materials that can change in terms of shape and property under the effect of energy stimulation. From the description of the actions and actuators, the authors show the weaknesses that limit the industrialization of 4D printing processes; these are the modes of energy stimulation. To prepare for the future, two chapters are introduced: “Material-Process Duality in Industrial 4D Printing” and “How to Approach 4D Printing in Design”. If the capture and reuse of 4D printing knowledge is necessary for this objective, the conclusion leaves the existing myth around the 4D printing theme and proposes a “draft” roadmap that should be the subject of reflection and scientific debate on a concept that is still immature, but full of promise.
As a result of its widespread implementation in economic and social structures, the network concept appears to be a paradigm of the contemporary world. The need for various services – transport, energy, consumption of manufacturing goods, provision of care, information and communication, etc. – draws users into interwoven networks which are meshes of material and immaterial flows. In this context, the user is a consumer of goods and services from industries and administrations, or they themselves are part of the organization (digital social networks). This book examines the invariants that unify networks in their diversity, as well as the specificities that differentiate them. It provides a reading grid that distinguishes a generic level where these systems find a common interpretation, and a specific level where appropriate analytical methods are used. Three case studies from different fields are presented to illustrate the purpose of the book in detail.
This book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes. Readers will discover: A review of the fundamentals and results of the theory of analogue control systems A clear and detailed presentation on the experimental modeling of dynamic processes Frequency synthesis techniques and in the state space of digital control systems Concrete applications of deterministic and stochastic optimal regulation laws New multimedia platforms, training and experimental automated research Various topologies and creation strategies, computer-aided telecontrol regulation systems, as well as a prototype of an automated laboratory that can be remotely operated via the Internet Simple Matlab programs to reproduce, where necessary, the main numerical and graphical results presented Many exercises corrected at the end of each chapter Detailed studies of practical automation projects, aimed at consolidating the skills of the automation profession acquired in the book
This book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.