This volume on mechanics of rigid and elastic bodies contains early papers concerning geometric statics, accompanied by works dealing with the motion of compound pendula and the deformation of beams. The papers on mechanics in this volume do not encompass the area of hydraulics, which occupies approximately one half of the papers dealing with mechanical problems and which are included in volume 7. This collection constitutes, roughly, one eighth of the entire work written by Bernoulli.
Outstanding approach to continuum mechanics. Its high mathematical level of teaching together with abstracts, summaries, boxes of essential formulae and numerous exercises with solutions, makes this handbook one of most complete books in the area. Students, lecturers, and practitioners will find this handbook a rich source for their studies or daily work.
This second edition of Physical Hydrodynamics is a deeply enriched version of a classical textbook on fluid dynamics. It retains the same pedagogical spirit, based on the authors' experience of teaching university students in the physical sciences, and emphasizes an experimental (inductive) approach rather than the more formal approach found in many textbooks in the field. A new edition was necessary as contact between the mechanics and physics approaches and their communities has increased continuously over the last few decades. Today the field is more widely open to other experimental sciences: materials, environmental, life, and earth sciences, as well as the engineering sciences. Representative examples from these fields have been included where possible, while retaining a general presentation in each case. This book should be useful for researchers and engineers in these various fields. Images have an essential place in fluid mechanics, and the illustrations in this edition have been completely revisited and widely improved. An inset of colour photographs is provided to stimulate the interest of readers. Exercises have also been added at the end of a number of chapters.
This is the second printing of the book first published in 1988. The first four chapters of the volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).
This book is of interest for students of mathematics or of neighboring subjects like physics, engineering, computer science, and also for people who have at least school level mathematics and have kept some interest in it. Also good for younger readers just reaching their final school year of mathematics.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
This book is centred about the Principle of virtual work and the related method for mechanical modelling. It aims at showing and enhancing the polyvalence and versatility of the virtual work approach in the mechanical modelling process. The virtual work statement is set as the principle at the root of a force modelling method that can be implemented on any geometrical description. After experimentally induced hypotheses have been made on the geometrical parameters that describe the concerned system and subsystems, the method provides a unifying framework for building up consistently associated force models where external and internal forces are introduced through their virtual rates of work. Systems described as three-dimensional, curvilinear or planar continua are considered: force models are established with the corresponding equations of motion; the validation process points out that enlarging the domain of relevance of the model for practical applications calls for an enrichment of the geometrical description that takes into account the underlying microstructure.
The application of microfluidics to biotechnology is an exciting new area that has already begun to revolutionize how researchers study and manipulate macromolecules like DNA, proteins and cells in vitro and within living organisms. Now in a newly revised and expanded second edition, the Artech House bestseller, Microfluidics for Biotechnology brings you to the cutting edge of this burgeoning field. Among the numerous updates, the second edition features three entirely new chapters on: non-dimensional numbers in microfluidics; interface, capillarity and microdrops; and digital, two-phase and droplet microfluidics.Presenting an enlightening balance of numerical approaches, theory, and experimental examples, this book provides a detailed look at the mechanical behavior of the different types of micro/nano particles and macromolecules that are used in biotechnology. You gain a solid understanding of microfluidics theory and the mechanics of microflows and microdrops. The book examines the diffusion of species and nanoparticles, including continuous flow and discrete Monte-Carlo methods.This unique volume describes the transport and dispersion of biochemical species and particles. You learn how to model biochemical reactions, including DNA hybridization and enzymatic reactions. Moreover, the book helps you master the theory, applications, and modeling of magnetic beads behavior and provides an overview of self-assembly and magnetic composite. Other key topics include the electric manipulation of micro/nanoparticles and macromolecules and the experimental aspects of biological macromolecule manipulation.
The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence, which postulate the equality between gravitational mass and inertial mass. To these principles are added the Hodge–Helmholtz decomposition, the principle of accumulation of constraints and the hypothesis of the duality of physical actions. These principles make it possible to establish the equation of motion based on the conservation of acceleration considered as an absolute quantity in a local frame of reference, in the form of a sum of the gradient of the scalar potential and the curl of the vector potential. These potentials, which represent the constraints of compression and rotation, are updated from the discrete operators. Discrete Mechanics: Concepts and Applications shows that this equation of discrete motion is representative of the compressible or incompressible flows of viscous or perfect fluids, the state of stress in an elastic solid or complex fluid and the propagation of nonlinear waves.
The risk management models used by banks and insurance companies are designed for when financial markets behave smoothly and efficiently. However, large risks materialize very often, and financial markets periodically go through bubbles and crashes. This book provides a road map of the most popular models of risk management and shows how they can be adapted to "turbulent times.
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
This is the second printing of the book first published in 1988. The first four chapters of the volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).
This book is about the life of primes. Indeed, once they are defined, primes take on a life of their own and the mysteries surrounding them begin multiplying, just like living cells reproduce themselves, and there seems to be no end to it. This monograph takes the reader on a journey through time, providing an accessible overview of the numerous prime number theory problems that mathematicians have been working on since Euclid. Topics are presented in chronological order as episodes. These include results on the distribution of primes, from the most elementary to the proof of the famous prime number theorem. The book also covers various primality tests and factorisation algorithms. It is then shown how our inability to factor large integers has allowed mathematicians to create today's most secure encryption method. Computer science buffs may be tempted to tackle some of the many open problems appearing in the episodes. Throughout the presentation, the human side of mathematics is displayed through short biographies that give a glimpse of the lives of the people who contributed to the life of primes. Each of the 37 episodes concludes with a series of problems (many with solutions) that will assist the reader in gaining a better understanding of the theory.
This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
``[In the book] we are dealing with a theme which cuts across the mathematics courses classically taught in the first four years of college. Thus it offers the reader the opportunity to learn, review and give long-term thought to the concepts covered in these programmes by following the guiding thread of this favoured number.'' --from the Preface This is a clever, beautiful book. The authors trace the thread of $\pi$ through the long history of mathematics. In so doing, they touch upon many major subjects in mathematics: geometry (of course), number theory, Galois theory, probability, transcendental numbers, analysis, and, as their crown jewel, the theory of elliptic functions, which connects many of the other subjects. By this device, the authors provide a tour through mathematics, one that mathematicians of all levels, amateur or professional, may appreciate. In many cases, the tour visits well-known topics from particular special interest groups. Remarkably, $\pi$ is often found at the places of deepest beauty. The volume includes many exercises with detailed solutions. Anyone from undergraduate mathematics majors through university professors will find many things to enjoy in this book.
This book treats cavitation, which is a unique phenomenon in the field of hyd- dynamics, although it can occur in any hydraulic machinery such as pumps, propellers, artificial hearts, and so forth. Cavitation is generated not only in water, but also in any kind of fluid, such as liquid hydrogen. The generation of cavitation can cause severe damage in hydraulic machinery. Therefore, the prevention of cavitation is an important concern for designers of hydraulic machinery. On the contrary, there is great potential to utilize cavitation in various important applications, such as environmental protection. There have been several books published on cavitation, including one by the same authors. This book differs from those previous ones, in that it is both more physical and more theoretical. Any theoretical explanation of the cavitation phenomenon is rather difficult, but the authors have succeeded in explaining it very well, and a reader can follow the equations easily. It is an advantage in reading this book to have some understanding of the physics of cavitation. Therefore, this book is not an introductory text, but a book for more advanced study. However, this does not mean that this book is too difficult for a beginner, because it explains the cavitation phenomenon using many figures. Therefore, even a beginner on cavitation can read and can understand what cavitation is. If the student studies through this book (with patience), he or she can become an expert on the physics of cavitation.
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.
The author, a well-known astronomer himself, describes the evolution of astronomical ideas, touching only lightly on most of the instrumental developments. Richly illustrated, the book starts with the astronomical ideas of the Egyptian and Mesopotamian philosophers, moves on to the Greek period and then on to the golden age of astronomy, that of Copernicus, Galileo, Kepler and Newton. Finally, Pecker concludes with modern theories of cosmology. Written with astronomy undergraduates in mind, this is a fascinating survey of astronomical thinking.
A new edition of a comprehensive text, updated throughout, with new material on behavioral economics, international taxation, cost-benefit analysis, and the economics of climate policy. Public economics studies how government taxing and spending activities affect the economy—economic efficiency and the distribution of income and wealth. This comprehensive text on public economics covers the core topics of market failure and taxation as well as recent developments in both policy and the academic literature. It is unique not only in its broad scope but in its balance between public finance and public choice and its combination of theory and relevant empirical evidence. The book covers the theory and methodology of public economics; presents a historical and theoretical overview of the public sector; and discusses such topics as departures from efficiency (including imperfect competition and asymmetric information), issues in political economy, equity, taxation, fiscal federalism, and tax competition among independent jurisdictions. Suggestions for further reading, from classic papers to recent research, appear in each chapter, as do exercises. The mathematics has been kept to a minimum without sacrificing intellectual rigor; the book remains analytical rather than discursive. This second edition has been thoroughly updated throughout. It offers new chapters on behavioral economics, limits to redistribution, international taxation, cost-benefit analysis, and the economics of climate policy. Additional exercises have been added and many sections revised in response to advice from readers of the first edition.
This book presents a forecasting mechanism of the price intervals for deriving the SCR (solvency capital requirement) eradicating the risk during the exercise period on one hand and measuring the risk by computing the hedging exit time function associating with smaller investments the date until which the value of the portfolio hedges the liabilities on the other. This information, summarized under the term “tychastic viability measure of risk” is an evolutionary alternative to statistical measures, when dealing with evolutions under uncertainty. The book is written by experts in the field and the target audience primarily comprises research experts and practitioners.
This book gives a comprehensive explanation of what governs the breakage of extruded materials, and what techniques are used to measure it. The breakage during impact aka collision is explained using basic laws of nature allowing readers to determine the handling severity of catalyst manufacturing equipment and the severity of entire plants. This information can then be used to improve on the architecture of existing plants and how to design grass-roots plants. The book begins with a summary of particle forming techniques in the particle technology industry. It covers extrusion technology in more detail since extrusion is one of the workhorses for particle manufacture. A section is also dedicated on how to describe transport and chemical reaction in such particulates for of course their final use. It presents the fundamentals of the study of breakage by relating basic laws in different fields (mechanics and physics) and this leads to two novel dimensionless groups that govern breakage. These topics are then apply these topics to R&D scale-up and manufacturing and shows how this approach is directly applicable.
Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes a bridge between the pure and applied mathematical disciplines, and the processing and analysis of gray-tone and binary images. It is accessible to readers who have neither extensive mathematical training, nor peer knowledge in Image Processing and Analysis. It is a self-contained book focusing on the mathematical notions, concepts, operations, structures, and frameworks that are beyond or involved in Image Processing and Analysis. The notations are simplified as far as possible in order to be more explicative and consistent throughout the book and the mathematical aspects are systematically discussed in the image processing and analysis context, through practical examples or concrete illustrations. Conversely, the discussed applicative issues allow the role of mathematics to be highlighted. Written for a broad audience – students, mathematicians, image processing and analysis specialists, as well as other scientists and practitioners – the author hopes that readers will find their own way of using the book, thus providing a mathematical companion that can help mathematicians become more familiar with image processing and analysis, and likewise, image processing and image analysis scientists, researchers and engineers gain a deeper understanding of mathematical notions and concepts.
This updated edition presents an introduction to the multidisciplinary field of automation and robotics for industrial applications. The book initially covers the important concepts of hydraulics and pneumatics and how they are used for automation in an industrial setting. It then moves to a discussion of circuits and using them in hydraulic, pneumatic, and fluidic design. The latter part of the book deals with electric and electronic controls in automation and final chapters are devoted to robotics, robotic programming, and applications of robotics in industry. New chapters on UAVs (Ch. 19) and AI in Industrial Automation (Ch. 20) are featured. The companion files include numerous video tutorial projects. FEATURES: Begins with introductory concepts on automation, hydraulics, and pneumatics Features new chapters on UAVs (Ch. 19) and AI in Industrial Automation (Ch. 20) Covers sensors, PLC's, microprocessors, transfer devices and feeders, robotic sensors, robotic grippers, and robot programming Companion files have video projects, history of robotics, and figures from the text
A solutions manual for all 582 exercises in the second edition of Intermediate Public Economics. A solutions manual for all 582 exercises in the second edition of Intermediate Public Economics.
This challenging and provocative book argues against much contemporary orthodoxy in philosophy and the social sciences by showing why objectivity in the domain of ethics is really no different from the objectivity of scientific knowledge. Many philosophers and social scientists have challenged the idea that we act for objectively authoritative reasons. Jean Hampton takes up the challenge by undermining two central assumptions of this contemporary orthodoxy: that one can understand instrumental reasons without appeal to objective authority, and that the adoption of the scientific world view requires no such appeal. In the course of the book Jean Hampton examines moral realism, the general nature of reason and norms, internalism and externalism, instrumental reasoning, and the expected utility model of practical reasoning. The book is sure to prove to be a seminal work in the theory of rationality that will be read by a broad swathe of philosophers and social scientists.
This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. - Describes prediction methodologies including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Presents current measurement and data analysis techniques - Discusses the linkage between experimental and computational results necessary for validation of numerical predictions - Meshes the varied results of computational and experimental studies in both free and wall-bounded flows to provide an overall current view of the field
There are a wide range of variables for actuaries to consider when calculating a motorist’s insurance premium, such as age, gender and type of vehicle. Further to these factors, motorists’ rates are subject to experience rating systems, including credibility mechanisms and Bonus Malus systems (BMSs). Actuarial Modelling of Claim Counts presents a comprehensive treatment of the various experience rating systems and their relationships with risk classification. The authors summarize the most recent developments in the field, presenting ratemaking systems, whilst taking into account exogenous information. The text: Offers the first self-contained, practical approach to a priori and a posteriori ratemaking in motor insurance. Discusses the issues of claim frequency and claim severity, multi-event systems, and the combinations of deductibles and BMSs. Introduces recent developments in actuarial science and exploits the generalised linear model and generalised linear mixed model to achieve risk classification. Presents credibility mechanisms as refinements of commercial BMSs. Provides practical applications with real data sets processed with SAS software. Actuarial Modelling of Claim Counts is essential reading for students in actuarial science, as well as practicing and academic actuaries. It is also ideally suited for professionals involved in the insurance industry, applied mathematicians, quantitative economists, financial engineers and statisticians.
This textbook offers an accessible approach to the subject of mathematics which divides the topic into smaller units, guiding students through questions, exercises and problems designed to slowly increase student confidence and experience. The sequence of studies is individualised according to performance and can be regarded as full tutorial course. The study guide satisfies two objectives simultaneously: firstly it enables students to make effective use of the textbook and secondly it offers advice on the improvement of study skills. Empirical studies have shown that the student's competence for using written information has improved significantly by using this study guide. The new edition includes a new chapter on Fourier integrals and Fourier transforms, numerous sections had been updated, 30 new problems with solutions had been added. The interactive study guide has seen a substantial update.
Uniting dozens of seemingly disparate results from different fields, this book combines concepts from mathematics and computer science to present the first integrated treatment of sequences generated by 'finite automata'. The authors apply the theory to the study of automatic sequences and their generalizations, such as Sturmian words and k-regular sequences. And further, they provide applications to number theory (particularly to formal power series and transcendence in finite characteristic), physics, computer graphics, and music. Starting from first principles wherever feasible, basic results from combinatorics on words, numeration systems, and models of computation are discussed. Thus this book is suitable for graduate students or advanced undergraduates, as well as for mature researchers wishing to know more about this fascinating subject. Results are presented from first principles wherever feasible, and the book is supplemented by a collection of 460 exercises, 85 open problems, and over 1600 citations to the literature.
In applications, and especially in mathematical finance, random time-dependent events are often modeled as stochastic processes. Assumptions are made about the structure of such processes, and serious researchers will want to justify those assumptions through the use of data. As statisticians are wont to say, “In God we trust; all others must bring data.” This book establishes the theory of how to go about estimating not just scalar parameters about a proposed model, but also the underlying structure of the model itself. Classic statistical tools are used: the law of large numbers, and the central limit theorem. Researchers have recently developed creative and original methods to use these tools in sophisticated (but highly technical) ways to reveal new details about the underlying structure. For the first time in book form, the authors present these latest techniques, based on research from the last 10 years. They include new findings. This book will be of special interest to researchers, combining the theory of mathematical finance with its investigation using market data, and it will also prove to be useful in a broad range of applications, such as to mathematical biology, chemical engineering, and physics.
The Marquis de Condorcet (1743-94) was a founding father of social science. He believed that what he called the moral sciences could be studied by the same exacting methods as the natural sciences, and he developed many of the tools for doing so. Condorcet has had two quite unconnected reputations: as the doomed and foolish Enlightenment scholar, writing about the perfectibility of mankind while in hiding from the Terror that would shortly claim his own life; and as the incomprehensible founder of social choice, whose Essai of 1785 was not understood until the 1950s. This book shows that he was not so foolish, nor so incomprehensible, as even sympathetic treatments have made him sound.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.